Symmetric designs: an algebraic approach
Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1983
|
Schriftenreihe: | London Mathematical Society lecture note series
74 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction and symmetry of symmetric designs – including methods inspired by the algebraic theory of coding and by the representation theory of finite groups – and includes many results. Rich in examples and containing over 100 problems, the text also provides an introduction to many of the modern algebraic approaches used, through six lengthy appendices and supplementary problems. The book will be of interest to both combinatorialists and algebraists, and could be used as a course text for a graduate course |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 306 pages) |
ISBN: | 9780511662164 |
DOI: | 10.1017/CBO9780511662164 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941677 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1983 |||| o||u| ||||||eng d | ||
020 | |a 9780511662164 |c Online |9 978-0-511-66216-4 | ||
024 | 7 | |a 10.1017/CBO9780511662164 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662164 | ||
035 | |a (OCoLC)967696919 | ||
035 | |a (DE-599)BVBBV043941677 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511/.6 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Lander, Eric S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetric designs |b an algebraic approach |c Eric S. Lander |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1983 | |
300 | |a 1 online resource (xii, 306 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 74 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction and symmetry of symmetric designs – including methods inspired by the algebraic theory of coding and by the representation theory of finite groups – and includes many results. Rich in examples and containing over 100 problems, the text also provides an introduction to many of the modern algebraic approaches used, through six lengthy appendices and supplementary problems. The book will be of interest to both combinatorialists and algebraists, and could be used as a course text for a graduate course | ||
650 | 4 | |a Combinatorial designs and configurations | |
650 | 0 | 7 | |a Symmetriegruppe |0 (DE-588)4184201-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symmetriegruppe |0 (DE-588)4184201-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-28693-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662164 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350647 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662164 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662164 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883756040192 |
---|---|
any_adam_object | |
author | Lander, Eric S. |
author_facet | Lander, Eric S. |
author_role | aut |
author_sort | Lander, Eric S. |
author_variant | e s l es esl |
building | Verbundindex |
bvnumber | BV043941677 |
classification_rvk | SI 320 SK 170 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662164 (OCoLC)967696919 (DE-599)BVBBV043941677 |
dewey-full | 511/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.6 |
dewey-search | 511/.6 |
dewey-sort | 3511 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662164 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02700nmm a2200481zcb4500</leader><controlfield tag="001">BV043941677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662164</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66216-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662164</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967696919</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lander, Eric S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetric designs</subfield><subfield code="b">an algebraic approach</subfield><subfield code="c">Eric S. Lander</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 306 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">74</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction and symmetry of symmetric designs – including methods inspired by the algebraic theory of coding and by the representation theory of finite groups – and includes many results. Rich in examples and containing over 100 problems, the text also provides an introduction to many of the modern algebraic approaches used, through six lengthy appendices and supplementary problems. The book will be of interest to both combinatorialists and algebraists, and could be used as a course text for a graduate course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial designs and configurations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetriegruppe</subfield><subfield code="0">(DE-588)4184201-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetriegruppe</subfield><subfield code="0">(DE-588)4184201-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-28693-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662164</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350647</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662164</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662164</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941677 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511662164 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350647 |
oclc_num | 967696919 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 306 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Lander, Eric S. Verfasser aut Symmetric designs an algebraic approach Eric S. Lander Cambridge Cambridge University Press 1983 1 online resource (xii, 306 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 74 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction and symmetry of symmetric designs – including methods inspired by the algebraic theory of coding and by the representation theory of finite groups – and includes many results. Rich in examples and containing over 100 problems, the text also provides an introduction to many of the modern algebraic approaches used, through six lengthy appendices and supplementary problems. The book will be of interest to both combinatorialists and algebraists, and could be used as a course text for a graduate course Combinatorial designs and configurations Symmetriegruppe (DE-588)4184201-7 gnd rswk-swf Symmetriegruppe (DE-588)4184201-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-28693-0 https://doi.org/10.1017/CBO9780511662164 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lander, Eric S. Symmetric designs an algebraic approach Combinatorial designs and configurations Symmetriegruppe (DE-588)4184201-7 gnd |
subject_GND | (DE-588)4184201-7 |
title | Symmetric designs an algebraic approach |
title_auth | Symmetric designs an algebraic approach |
title_exact_search | Symmetric designs an algebraic approach |
title_full | Symmetric designs an algebraic approach Eric S. Lander |
title_fullStr | Symmetric designs an algebraic approach Eric S. Lander |
title_full_unstemmed | Symmetric designs an algebraic approach Eric S. Lander |
title_short | Symmetric designs |
title_sort | symmetric designs an algebraic approach |
title_sub | an algebraic approach |
topic | Combinatorial designs and configurations Symmetriegruppe (DE-588)4184201-7 gnd |
topic_facet | Combinatorial designs and configurations Symmetriegruppe |
url | https://doi.org/10.1017/CBO9780511662164 |
work_keys_str_mv | AT landererics symmetricdesignsanalgebraicapproach |