Black hole uniqueness theorems:
This timely review provides a self-contained introduction to the mathematical theory of stationary black holes and a self-consistent exposition of the corresponding uniqueness theorems. The opening chapters examine the general properties of space-times admitting Killing fields and derive the Kerr-Ne...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1996
|
Schriftenreihe: | Cambridge lecture notes in physics
6 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This timely review provides a self-contained introduction to the mathematical theory of stationary black holes and a self-consistent exposition of the corresponding uniqueness theorems. The opening chapters examine the general properties of space-times admitting Killing fields and derive the Kerr-Newman metric. Strong emphasis is given to the geometrical concepts. The general features of stationary black holes and the laws of black hole mechanics are then reviewed. Critical steps towards the proof of the 'no-hair' theorem are then discussed, including the methods used by Israel, the divergence formulae derived by Carter, Robinson and others, and finally the sigma model identities and the positive mass theorem. The book is rounded off with an extension of the electro-vacuum uniqueness theorem to self-gravitating scalar fields and harmonic mappings. This volume provides a rigorous textbook for graduate students in physics and mathematics. It also offers an invaluable, up-to-date reference for researchers in mathematical physics, general relativity and astrophysics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 249 pages) |
ISBN: | 9780511661396 |
DOI: | 10.1017/CBO9780511661396 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941676 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1996 |||| o||u| ||||||eng d | ||
020 | |a 9780511661396 |c Online |9 978-0-511-66139-6 | ||
024 | 7 | |a 10.1017/CBO9780511661396 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511661396 | ||
035 | |a (OCoLC)849876717 | ||
035 | |a (DE-599)BVBBV043941676 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 523.8/875/0151 |2 20 | |
084 | |a UH 8500 |0 (DE-625)145782: |2 rvk | ||
084 | |a US 2200 |0 (DE-625)146682: |2 rvk | ||
100 | 1 | |a Heusler, Markus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Black hole uniqueness theorems |c Markus Heusler |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1996 | |
300 | |a 1 online resource (xiii, 249 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge lecture notes in physics |v 6 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Preliminaries -- 2. Spacetimes admitting Killing fields -- 3. Circular spacetimes -- 4. The Kerr metric -- 5. Electrovac spacetimes with Killing fields -- 6. Stationary black holes -- 7. The four laws of black hole physics -- 8. Integrability and divergence identities -- 9. Uniqueness theorems for nonrotating holes -- 10. Uniqueness theorems for rotating holes -- 11. Scalar mappings -- 12. Self-gravitating harmonic mappings | |
520 | |a This timely review provides a self-contained introduction to the mathematical theory of stationary black holes and a self-consistent exposition of the corresponding uniqueness theorems. The opening chapters examine the general properties of space-times admitting Killing fields and derive the Kerr-Newman metric. Strong emphasis is given to the geometrical concepts. The general features of stationary black holes and the laws of black hole mechanics are then reviewed. Critical steps towards the proof of the 'no-hair' theorem are then discussed, including the methods used by Israel, the divergence formulae derived by Carter, Robinson and others, and finally the sigma model identities and the positive mass theorem. The book is rounded off with an extension of the electro-vacuum uniqueness theorem to self-gravitating scalar fields and harmonic mappings. This volume provides a rigorous textbook for graduate students in physics and mathematics. It also offers an invaluable, up-to-date reference for researchers in mathematical physics, general relativity and astrophysics | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Black holes (Astronomy) / Mathematics | |
650 | 0 | 7 | |a Eindeutigkeitssatz |0 (DE-588)4151250-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwarzes Loch |0 (DE-588)4053793-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schwarzes Loch |0 (DE-588)4053793-6 |D s |
689 | 0 | 1 | |a Eindeutigkeitssatz |0 (DE-588)4151250-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-56735-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511661396 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350646 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511661396 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511661396 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883747651584 |
---|---|
any_adam_object | |
author | Heusler, Markus |
author_facet | Heusler, Markus |
author_role | aut |
author_sort | Heusler, Markus |
author_variant | m h mh |
building | Verbundindex |
bvnumber | BV043941676 |
classification_rvk | UH 8500 US 2200 |
collection | ZDB-20-CBO |
contents | 1. Preliminaries -- 2. Spacetimes admitting Killing fields -- 3. Circular spacetimes -- 4. The Kerr metric -- 5. Electrovac spacetimes with Killing fields -- 6. Stationary black holes -- 7. The four laws of black hole physics -- 8. Integrability and divergence identities -- 9. Uniqueness theorems for nonrotating holes -- 10. Uniqueness theorems for rotating holes -- 11. Scalar mappings -- 12. Self-gravitating harmonic mappings |
ctrlnum | (ZDB-20-CBO)CR9780511661396 (OCoLC)849876717 (DE-599)BVBBV043941676 |
dewey-full | 523.8/875/0151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.8/875/0151 |
dewey-search | 523.8/875/0151 |
dewey-sort | 3523.8 3875 3151 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511661396 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03507nmm a2200517zcb4500</leader><controlfield tag="001">BV043941676</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661396</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66139-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511661396</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511661396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849876717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941676</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">523.8/875/0151</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8500</subfield><subfield code="0">(DE-625)145782:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 2200</subfield><subfield code="0">(DE-625)146682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heusler, Markus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Black hole uniqueness theorems</subfield><subfield code="c">Markus Heusler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 249 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge lecture notes in physics</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Preliminaries -- 2. Spacetimes admitting Killing fields -- 3. Circular spacetimes -- 4. The Kerr metric -- 5. Electrovac spacetimes with Killing fields -- 6. Stationary black holes -- 7. The four laws of black hole physics -- 8. Integrability and divergence identities -- 9. Uniqueness theorems for nonrotating holes -- 10. Uniqueness theorems for rotating holes -- 11. Scalar mappings -- 12. Self-gravitating harmonic mappings</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This timely review provides a self-contained introduction to the mathematical theory of stationary black holes and a self-consistent exposition of the corresponding uniqueness theorems. The opening chapters examine the general properties of space-times admitting Killing fields and derive the Kerr-Newman metric. Strong emphasis is given to the geometrical concepts. The general features of stationary black holes and the laws of black hole mechanics are then reviewed. Critical steps towards the proof of the 'no-hair' theorem are then discussed, including the methods used by Israel, the divergence formulae derived by Carter, Robinson and others, and finally the sigma model identities and the positive mass theorem. The book is rounded off with an extension of the electro-vacuum uniqueness theorem to self-gravitating scalar fields and harmonic mappings. This volume provides a rigorous textbook for graduate students in physics and mathematics. It also offers an invaluable, up-to-date reference for researchers in mathematical physics, general relativity and astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black holes (Astronomy) / Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eindeutigkeitssatz</subfield><subfield code="0">(DE-588)4151250-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwarzes Loch</subfield><subfield code="0">(DE-588)4053793-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schwarzes Loch</subfield><subfield code="0">(DE-588)4053793-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eindeutigkeitssatz</subfield><subfield code="0">(DE-588)4151250-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-56735-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511661396</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350646</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661396</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511661396</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941676 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511661396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350646 |
oclc_num | 849876717 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 249 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge lecture notes in physics |
spelling | Heusler, Markus Verfasser aut Black hole uniqueness theorems Markus Heusler Cambridge Cambridge University Press 1996 1 online resource (xiii, 249 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge lecture notes in physics 6 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Preliminaries -- 2. Spacetimes admitting Killing fields -- 3. Circular spacetimes -- 4. The Kerr metric -- 5. Electrovac spacetimes with Killing fields -- 6. Stationary black holes -- 7. The four laws of black hole physics -- 8. Integrability and divergence identities -- 9. Uniqueness theorems for nonrotating holes -- 10. Uniqueness theorems for rotating holes -- 11. Scalar mappings -- 12. Self-gravitating harmonic mappings This timely review provides a self-contained introduction to the mathematical theory of stationary black holes and a self-consistent exposition of the corresponding uniqueness theorems. The opening chapters examine the general properties of space-times admitting Killing fields and derive the Kerr-Newman metric. Strong emphasis is given to the geometrical concepts. The general features of stationary black holes and the laws of black hole mechanics are then reviewed. Critical steps towards the proof of the 'no-hair' theorem are then discussed, including the methods used by Israel, the divergence formulae derived by Carter, Robinson and others, and finally the sigma model identities and the positive mass theorem. The book is rounded off with an extension of the electro-vacuum uniqueness theorem to self-gravitating scalar fields and harmonic mappings. This volume provides a rigorous textbook for graduate students in physics and mathematics. It also offers an invaluable, up-to-date reference for researchers in mathematical physics, general relativity and astrophysics Mathematik Black holes (Astronomy) / Mathematics Eindeutigkeitssatz (DE-588)4151250-9 gnd rswk-swf Schwarzes Loch (DE-588)4053793-6 gnd rswk-swf Schwarzes Loch (DE-588)4053793-6 s Eindeutigkeitssatz (DE-588)4151250-9 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-56735-0 https://doi.org/10.1017/CBO9780511661396 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heusler, Markus Black hole uniqueness theorems 1. Preliminaries -- 2. Spacetimes admitting Killing fields -- 3. Circular spacetimes -- 4. The Kerr metric -- 5. Electrovac spacetimes with Killing fields -- 6. Stationary black holes -- 7. The four laws of black hole physics -- 8. Integrability and divergence identities -- 9. Uniqueness theorems for nonrotating holes -- 10. Uniqueness theorems for rotating holes -- 11. Scalar mappings -- 12. Self-gravitating harmonic mappings Mathematik Black holes (Astronomy) / Mathematics Eindeutigkeitssatz (DE-588)4151250-9 gnd Schwarzes Loch (DE-588)4053793-6 gnd |
subject_GND | (DE-588)4151250-9 (DE-588)4053793-6 |
title | Black hole uniqueness theorems |
title_auth | Black hole uniqueness theorems |
title_exact_search | Black hole uniqueness theorems |
title_full | Black hole uniqueness theorems Markus Heusler |
title_fullStr | Black hole uniqueness theorems Markus Heusler |
title_full_unstemmed | Black hole uniqueness theorems Markus Heusler |
title_short | Black hole uniqueness theorems |
title_sort | black hole uniqueness theorems |
topic | Mathematik Black holes (Astronomy) / Mathematics Eindeutigkeitssatz (DE-588)4151250-9 gnd Schwarzes Loch (DE-588)4053793-6 gnd |
topic_facet | Mathematik Black holes (Astronomy) / Mathematics Eindeutigkeitssatz Schwarzes Loch |
url | https://doi.org/10.1017/CBO9780511661396 |
work_keys_str_mv | AT heuslermarkus blackholeuniquenesstheorems |