The Schwinger action principle and effective action:
This book, first published in 2007, is an introduction to the Schwinger action principle in quantum mechanics and quantum field theory, with applications to a variety of different models including Bose–Einstein condensation, the Casimir effect and trapped Fermi gases. The book begins with a brief re...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book, first published in 2007, is an introduction to the Schwinger action principle in quantum mechanics and quantum field theory, with applications to a variety of different models including Bose–Einstein condensation, the Casimir effect and trapped Fermi gases. The book begins with a brief review of the action principle in classical mechanics and classical field theory. It then moves on to quantum field theory, focusing on the effective action method. This is introduced as simply as possible by using the zero-point energy of the simple harmonic oscillator as the starting point. The book concludes with a more complete definition of the effective action, and demonstrates how the provisional definition used earlier is the first term in the systematic loop expansion. The renormalization of interacting scalar field theory is presented to two-loop order. This book will interest graduate students and researchers in theoretical physics who are familiar with quantum mechanics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 495 pages) |
ISBN: | 9780511585913 |
DOI: | 10.1017/CBO9780511585913 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043941669 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511585913 |c Online |9 978-0-511-58591-3 | ||
024 | 7 | |a 10.1017/CBO9780511585913 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511585913 | ||
035 | |a (OCoLC)701823534 | ||
035 | |a (DE-599)BVBBV043941669 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.12 |2 22 | |
084 | |a UO 4050 |0 (DE-625)146242: |2 rvk | ||
100 | 1 | |a Toms, David J. |d 1953- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Schwinger action principle and effective action |c David J. Toms |
246 | 1 | 3 | |a The Schwinger Action Principle & Effective Action |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xi, 495 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Action principle in classical mechanics -- 2. Action principle in classical field theory -- 3. Action principle in quantum theory -- 4. The effective action -- 5. Quantum statistical mechanics -- 6. Effective action at finite temperature -- 7. Further applications of the Schwinger action principle -- 8. General definition of the effective action -- App. 1. Mathematical appendices -- App. 2. Review of special relativity -- App. 3. Interaction picture | |
520 | |a This book, first published in 2007, is an introduction to the Schwinger action principle in quantum mechanics and quantum field theory, with applications to a variety of different models including Bose–Einstein condensation, the Casimir effect and trapped Fermi gases. The book begins with a brief review of the action principle in classical mechanics and classical field theory. It then moves on to quantum field theory, focusing on the effective action method. This is introduced as simply as possible by using the zero-point energy of the simple harmonic oscillator as the starting point. The book concludes with a more complete definition of the effective action, and demonstrates how the provisional definition used earlier is the first term in the systematic loop expansion. The renormalization of interacting scalar field theory is presented to two-loop order. This book will interest graduate students and researchers in theoretical physics who are familiar with quantum mechanics | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Schwinger action principle | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Schwinger-Modell |0 (DE-588)4272231-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schwinger-Modell |0 (DE-588)4272231-7 |D s |
689 | 0 | 1 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-87676-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-40630-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511585913 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350639 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511585913 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511585913 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883723534336 |
---|---|
any_adam_object | |
author | Toms, David J. 1953- |
author_facet | Toms, David J. 1953- |
author_role | aut |
author_sort | Toms, David J. 1953- |
author_variant | d j t dj djt |
building | Verbundindex |
bvnumber | BV043941669 |
classification_rvk | UO 4050 |
collection | ZDB-20-CBO |
contents | 1. Action principle in classical mechanics -- 2. Action principle in classical field theory -- 3. Action principle in quantum theory -- 4. The effective action -- 5. Quantum statistical mechanics -- 6. Effective action at finite temperature -- 7. Further applications of the Schwinger action principle -- 8. General definition of the effective action -- App. 1. Mathematical appendices -- App. 2. Review of special relativity -- App. 3. Interaction picture |
ctrlnum | (ZDB-20-CBO)CR9780511585913 (OCoLC)701823534 (DE-599)BVBBV043941669 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511585913 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03662nmm a2200565zc 4500</leader><controlfield tag="001">BV043941669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511585913</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-58591-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511585913</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511585913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)701823534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4050</subfield><subfield code="0">(DE-625)146242:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Toms, David J.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Schwinger action principle and effective action</subfield><subfield code="c">David J. Toms</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The Schwinger Action Principle & Effective Action</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 495 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Action principle in classical mechanics -- 2. Action principle in classical field theory -- 3. Action principle in quantum theory -- 4. The effective action -- 5. Quantum statistical mechanics -- 6. Effective action at finite temperature -- 7. Further applications of the Schwinger action principle -- 8. General definition of the effective action -- App. 1. Mathematical appendices -- App. 2. Review of special relativity -- App. 3. Interaction picture</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book, first published in 2007, is an introduction to the Schwinger action principle in quantum mechanics and quantum field theory, with applications to a variety of different models including Bose–Einstein condensation, the Casimir effect and trapped Fermi gases. The book begins with a brief review of the action principle in classical mechanics and classical field theory. It then moves on to quantum field theory, focusing on the effective action method. This is introduced as simply as possible by using the zero-point energy of the simple harmonic oscillator as the starting point. The book concludes with a more complete definition of the effective action, and demonstrates how the provisional definition used earlier is the first term in the systematic loop expansion. The renormalization of interacting scalar field theory is presented to two-loop order. This book will interest graduate students and researchers in theoretical physics who are familiar with quantum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwinger action principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwinger-Modell</subfield><subfield code="0">(DE-588)4272231-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schwinger-Modell</subfield><subfield code="0">(DE-588)4272231-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-87676-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-40630-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511585913</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350639</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511585913</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511585913</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941669 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511585913 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350639 |
oclc_num | 701823534 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 495 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Toms, David J. 1953- Verfasser aut The Schwinger action principle and effective action David J. Toms The Schwinger Action Principle & Effective Action Cambridge Cambridge University Press 2007 1 online resource (xi, 495 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Action principle in classical mechanics -- 2. Action principle in classical field theory -- 3. Action principle in quantum theory -- 4. The effective action -- 5. Quantum statistical mechanics -- 6. Effective action at finite temperature -- 7. Further applications of the Schwinger action principle -- 8. General definition of the effective action -- App. 1. Mathematical appendices -- App. 2. Review of special relativity -- App. 3. Interaction picture This book, first published in 2007, is an introduction to the Schwinger action principle in quantum mechanics and quantum field theory, with applications to a variety of different models including Bose–Einstein condensation, the Casimir effect and trapped Fermi gases. The book begins with a brief review of the action principle in classical mechanics and classical field theory. It then moves on to quantum field theory, focusing on the effective action method. This is introduced as simply as possible by using the zero-point energy of the simple harmonic oscillator as the starting point. The book concludes with a more complete definition of the effective action, and demonstrates how the provisional definition used earlier is the first term in the systematic loop expansion. The renormalization of interacting scalar field theory is presented to two-loop order. This book will interest graduate students and researchers in theoretical physics who are familiar with quantum mechanics Mathematische Physik Quantentheorie Schwinger action principle Quantum theory Mathematical physics Schwinger-Modell (DE-588)4272231-7 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Schwinger-Modell (DE-588)4272231-7 s Quantenfeldtheorie (DE-588)4047984-5 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-87676-6 Erscheint auch als Druckausgabe 978-1-107-40630-8 https://doi.org/10.1017/CBO9780511585913 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Toms, David J. 1953- The Schwinger action principle and effective action 1. Action principle in classical mechanics -- 2. Action principle in classical field theory -- 3. Action principle in quantum theory -- 4. The effective action -- 5. Quantum statistical mechanics -- 6. Effective action at finite temperature -- 7. Further applications of the Schwinger action principle -- 8. General definition of the effective action -- App. 1. Mathematical appendices -- App. 2. Review of special relativity -- App. 3. Interaction picture Mathematische Physik Quantentheorie Schwinger action principle Quantum theory Mathematical physics Schwinger-Modell (DE-588)4272231-7 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4272231-7 (DE-588)4047984-5 |
title | The Schwinger action principle and effective action |
title_alt | The Schwinger Action Principle & Effective Action |
title_auth | The Schwinger action principle and effective action |
title_exact_search | The Schwinger action principle and effective action |
title_full | The Schwinger action principle and effective action David J. Toms |
title_fullStr | The Schwinger action principle and effective action David J. Toms |
title_full_unstemmed | The Schwinger action principle and effective action David J. Toms |
title_short | The Schwinger action principle and effective action |
title_sort | the schwinger action principle and effective action |
topic | Mathematische Physik Quantentheorie Schwinger action principle Quantum theory Mathematical physics Schwinger-Modell (DE-588)4272231-7 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Mathematische Physik Quantentheorie Schwinger action principle Quantum theory Mathematical physics Schwinger-Modell Quantenfeldtheorie |
url | https://doi.org/10.1017/CBO9780511585913 |
work_keys_str_mv | AT tomsdavidj theschwingeractionprincipleandeffectiveaction AT tomsdavidj theschwingeractionprincipleeffectiveaction |