Corings and comodules:
Corings and comodules are fundamental algebraic structures, which can be thought of as both dualisations and generalisations of rings and modules. Introduced by Sweedler in 1975, only recently they have been shown to have far reaching applications ranging from the category theory including different...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | London Mathematical Society lecture note series
309 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Corings and comodules are fundamental algebraic structures, which can be thought of as both dualisations and generalisations of rings and modules. Introduced by Sweedler in 1975, only recently they have been shown to have far reaching applications ranging from the category theory including differential graded categories through classical and Hopf-type module theory to non-commutative geometry and mathematical physics. This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 476 pages) |
ISBN: | 9780511546495 |
DOI: | 10.1017/CBO9780511546495 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941651 | ||
003 | DE-604 | ||
005 | 20200504 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511546495 |c Online |9 978-0-511-54649-5 | ||
024 | 7 | |a 10.1017/CBO9780511546495 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546495 | ||
035 | |a (OCoLC)850496330 | ||
035 | |a (DE-599)BVBBV043941651 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.4 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
100 | 1 | |a Brzeziński, Tomasz |d 1966- |e Verfasser |0 (DE-588)13561175X |4 aut | |
245 | 1 | 0 | |a Corings and comodules |c Tomasz Brzezinski, Robert Wisbauer |
246 | 1 | 3 | |a Corings & Comodules |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 online resource (x, 476 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 309 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Coalgebras and comodules -- 2. Bialgebras and Hopf algebras -- 3. Corings and comodules -- 4. Corings and extensions of rings -- 5. Corings and entwining structures -- 6. Weak corings and entwinings | |
520 | |a Corings and comodules are fundamental algebraic structures, which can be thought of as both dualisations and generalisations of rings and modules. Introduced by Sweedler in 1975, only recently they have been shown to have far reaching applications ranging from the category theory including differential graded categories through classical and Hopf-type module theory to non-commutative geometry and mathematical physics. This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry | ||
650 | 4 | |a Corings (Algebra) | |
650 | 4 | |a Comodules | |
650 | 0 | 7 | |a Koalgebra |0 (DE-588)4164324-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modul |0 (DE-588)4129770-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Koalgebra |0 (DE-588)4164324-0 |D s |
689 | 0 | 1 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 0 | 2 | |a Modul |0 (DE-588)4129770-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wisbauer, Robert |d 1941- |e Sonstige |0 (DE-588)108295044 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-53931-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546495 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350621 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511546495 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546495 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883684737024 |
---|---|
any_adam_object | |
author | Brzeziński, Tomasz 1966- |
author_GND | (DE-588)13561175X (DE-588)108295044 |
author_facet | Brzeziński, Tomasz 1966- |
author_role | aut |
author_sort | Brzeziński, Tomasz 1966- |
author_variant | t b tb |
building | Verbundindex |
bvnumber | BV043941651 |
classification_rvk | SI 320 |
collection | ZDB-20-CBO |
contents | 1. Coalgebras and comodules -- 2. Bialgebras and Hopf algebras -- 3. Corings and comodules -- 4. Corings and extensions of rings -- 5. Corings and entwining structures -- 6. Weak corings and entwinings |
ctrlnum | (ZDB-20-CBO)CR9780511546495 (OCoLC)850496330 (DE-599)BVBBV043941651 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546495 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03473nmm a2200553zcb4500</leader><controlfield tag="001">BV043941651</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200504 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546495</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54649-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850496330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941651</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brzeziński, Tomasz</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13561175X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Corings and comodules</subfield><subfield code="c">Tomasz Brzezinski, Robert Wisbauer</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Corings & Comodules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 476 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">309</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Coalgebras and comodules -- 2. Bialgebras and Hopf algebras -- 3. Corings and comodules -- 4. Corings and extensions of rings -- 5. Corings and entwining structures -- 6. Weak corings and entwinings</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Corings and comodules are fundamental algebraic structures, which can be thought of as both dualisations and generalisations of rings and modules. Introduced by Sweedler in 1975, only recently they have been shown to have far reaching applications ranging from the category theory including differential graded categories through classical and Hopf-type module theory to non-commutative geometry and mathematical physics. This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comodules</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Koalgebra</subfield><subfield code="0">(DE-588)4164324-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Koalgebra</subfield><subfield code="0">(DE-588)4164324-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wisbauer, Robert</subfield><subfield code="d">1941-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)108295044</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-53931-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546495</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350621</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546495</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546495</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941651 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511546495 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350621 |
oclc_num | 850496330 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 476 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Brzeziński, Tomasz 1966- Verfasser (DE-588)13561175X aut Corings and comodules Tomasz Brzezinski, Robert Wisbauer Corings & Comodules Cambridge Cambridge University Press 2003 1 online resource (x, 476 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 309 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Coalgebras and comodules -- 2. Bialgebras and Hopf algebras -- 3. Corings and comodules -- 4. Corings and extensions of rings -- 5. Corings and entwining structures -- 6. Weak corings and entwinings Corings and comodules are fundamental algebraic structures, which can be thought of as both dualisations and generalisations of rings and modules. Introduced by Sweedler in 1975, only recently they have been shown to have far reaching applications ranging from the category theory including differential graded categories through classical and Hopf-type module theory to non-commutative geometry and mathematical physics. This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry Corings (Algebra) Comodules Koalgebra (DE-588)4164324-0 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Modul (DE-588)4129770-2 gnd rswk-swf Koalgebra (DE-588)4164324-0 s Ring Mathematik (DE-588)4128084-2 s Modul (DE-588)4129770-2 s 1\p DE-604 Wisbauer, Robert 1941- Sonstige (DE-588)108295044 oth Erscheint auch als Druckausgabe 978-0-521-53931-9 https://doi.org/10.1017/CBO9780511546495 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brzeziński, Tomasz 1966- Corings and comodules 1. Coalgebras and comodules -- 2. Bialgebras and Hopf algebras -- 3. Corings and comodules -- 4. Corings and extensions of rings -- 5. Corings and entwining structures -- 6. Weak corings and entwinings Corings (Algebra) Comodules Koalgebra (DE-588)4164324-0 gnd Ring Mathematik (DE-588)4128084-2 gnd Modul (DE-588)4129770-2 gnd |
subject_GND | (DE-588)4164324-0 (DE-588)4128084-2 (DE-588)4129770-2 |
title | Corings and comodules |
title_alt | Corings & Comodules |
title_auth | Corings and comodules |
title_exact_search | Corings and comodules |
title_full | Corings and comodules Tomasz Brzezinski, Robert Wisbauer |
title_fullStr | Corings and comodules Tomasz Brzezinski, Robert Wisbauer |
title_full_unstemmed | Corings and comodules Tomasz Brzezinski, Robert Wisbauer |
title_short | Corings and comodules |
title_sort | corings and comodules |
topic | Corings (Algebra) Comodules Koalgebra (DE-588)4164324-0 gnd Ring Mathematik (DE-588)4128084-2 gnd Modul (DE-588)4129770-2 gnd |
topic_facet | Corings (Algebra) Comodules Koalgebra Ring Mathematik Modul |
url | https://doi.org/10.1017/CBO9780511546495 |
work_keys_str_mv | AT brzezinskitomasz coringsandcomodules AT wisbauerrobert coringsandcomodules AT brzezinskitomasz coringscomodules AT wisbauerrobert coringscomodules |