Enumeration of finite groups:
How many groups of order n are there? This is a natural question for anyone studying group theory, and this Tract provides an exhaustive and up-to-date account of research into this question spanning almost fifty years. The authors presuppose an undergraduate knowledge of group theory, up to and inc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge tracts in mathematics
173 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | How many groups of order n are there? This is a natural question for anyone studying group theory, and this Tract provides an exhaustive and up-to-date account of research into this question spanning almost fifty years. The authors presuppose an undergraduate knowledge of group theory, up to and including Sylow's Theorems, a little knowledge of how a group may be presented by generators and relations, a very little representation theory from the perspective of module theory, and a very little cohomology theory - but most of the basics are expounded here and the book is more or less self-contained. Although it is principally devoted to a connected exposition of an agreeable theory, the book does also contain some material that has not hitherto been published. It is designed to be used as a graduate text but also as a handbook for established research workers in group theory |
Beschreibung: | 1 Online-Ressource (xii, 281 Seiten) |
ISBN: | 9780511542756 |
DOI: | 10.1017/CBO9780511542756 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941643 | ||
003 | DE-604 | ||
005 | 20190313 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511542756 |c Online |9 978-0-511-54275-6 | ||
024 | 7 | |a 10.1017/CBO9780511542756 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511542756 | ||
035 | |a (OCoLC)850772801 | ||
035 | |a (DE-599)BVBBV043941643 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512.23 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Blackburn, Simon R. |e Verfasser |0 (DE-588)113768931 |4 aut | |
245 | 1 | 0 | |a Enumeration of finite groups |c Simon R. Blackburn, Peter M. Neumann, Geetha Venkataraman |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 Online-Ressource (xii, 281 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 173 | |
505 | 8 | |a Some basic observations -- Preliminaries -- Enumerating p-groups: a lower bound -- Enumerating p-groups: upper bounds -- Some more preliminaries -- Group extensions and cohomology -- Some representation theory -- Primitive soluble linear groups -- The orders of groups -- Conjugacy classes of maximal soluble subgroups of symmetric groups -- Enumeration of finite groups with abelian Sylow subgroups -- Maximal soluble linear groups -- Conjugacy classes of maximal soluble subgroups of the general linear groups -- Pyber's theorem: the soluble case -- Pyber's theorem: the general case -- Enumeration within varieties of abelian groups -- Enumeration within small varieties of A-groups -- Enumeration within small varieties of p-groups | |
520 | |a How many groups of order n are there? This is a natural question for anyone studying group theory, and this Tract provides an exhaustive and up-to-date account of research into this question spanning almost fifty years. The authors presuppose an undergraduate knowledge of group theory, up to and including Sylow's Theorems, a little knowledge of how a group may be presented by generators and relations, a very little representation theory from the perspective of module theory, and a very little cohomology theory - but most of the basics are expounded here and the book is more or less self-contained. Although it is principally devoted to a connected exposition of an agreeable theory, the book does also contain some material that has not hitherto been published. It is designed to be used as a graduate text but also as a handbook for established research workers in group theory | ||
650 | 4 | |a Finite groups | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abzählen |0 (DE-588)4508960-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Abzählen |0 (DE-588)4508960-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Neumann, Peter M. |d 1940-2020 |e Sonstige |0 (DE-588)1019198230 |4 oth | |
700 | 1 | |a Venkataraman, Geetha |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-88217-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511542756 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350613 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511542756 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511542756 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511542756 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883671105536 |
---|---|
any_adam_object | |
author | Blackburn, Simon R. |
author_GND | (DE-588)113768931 (DE-588)1019198230 |
author_facet | Blackburn, Simon R. |
author_role | aut |
author_sort | Blackburn, Simon R. |
author_variant | s r b sr srb |
building | Verbundindex |
bvnumber | BV043941643 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
contents | Some basic observations -- Preliminaries -- Enumerating p-groups: a lower bound -- Enumerating p-groups: upper bounds -- Some more preliminaries -- Group extensions and cohomology -- Some representation theory -- Primitive soluble linear groups -- The orders of groups -- Conjugacy classes of maximal soluble subgroups of symmetric groups -- Enumeration of finite groups with abelian Sylow subgroups -- Maximal soluble linear groups -- Conjugacy classes of maximal soluble subgroups of the general linear groups -- Pyber's theorem: the soluble case -- Pyber's theorem: the general case -- Enumeration within varieties of abelian groups -- Enumeration within small varieties of A-groups -- Enumeration within small varieties of p-groups |
ctrlnum | (ZDB-20-CBO)CR9780511542756 (OCoLC)850772801 (DE-599)BVBBV043941643 |
dewey-full | 512.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.23 |
dewey-search | 512.23 |
dewey-sort | 3512.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511542756 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03673nmm a2200505zcb4500</leader><controlfield tag="001">BV043941643</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511542756</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54275-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511542756</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511542756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850772801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941643</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blackburn, Simon R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113768931</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enumeration of finite groups</subfield><subfield code="c">Simon R. Blackburn, Peter M. Neumann, Geetha Venkataraman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 281 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">173</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Some basic observations -- Preliminaries -- Enumerating p-groups: a lower bound -- Enumerating p-groups: upper bounds -- Some more preliminaries -- Group extensions and cohomology -- Some representation theory -- Primitive soluble linear groups -- The orders of groups -- Conjugacy classes of maximal soluble subgroups of symmetric groups -- Enumeration of finite groups with abelian Sylow subgroups -- Maximal soluble linear groups -- Conjugacy classes of maximal soluble subgroups of the general linear groups -- Pyber's theorem: the soluble case -- Pyber's theorem: the general case -- Enumeration within varieties of abelian groups -- Enumeration within small varieties of A-groups -- Enumeration within small varieties of p-groups</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">How many groups of order n are there? This is a natural question for anyone studying group theory, and this Tract provides an exhaustive and up-to-date account of research into this question spanning almost fifty years. The authors presuppose an undergraduate knowledge of group theory, up to and including Sylow's Theorems, a little knowledge of how a group may be presented by generators and relations, a very little representation theory from the perspective of module theory, and a very little cohomology theory - but most of the basics are expounded here and the book is more or less self-contained. Although it is principally devoted to a connected exposition of an agreeable theory, the book does also contain some material that has not hitherto been published. It is designed to be used as a graduate text but also as a handbook for established research workers in group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abzählen</subfield><subfield code="0">(DE-588)4508960-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Abzählen</subfield><subfield code="0">(DE-588)4508960-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neumann, Peter M.</subfield><subfield code="d">1940-2020</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1019198230</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Venkataraman, Geetha</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-88217-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511542756</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350613</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542756</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542756</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542756</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941643 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511542756 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350613 |
oclc_num | 850772801 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xii, 281 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Blackburn, Simon R. Verfasser (DE-588)113768931 aut Enumeration of finite groups Simon R. Blackburn, Peter M. Neumann, Geetha Venkataraman Cambridge Cambridge University Press 2007 1 Online-Ressource (xii, 281 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 173 Some basic observations -- Preliminaries -- Enumerating p-groups: a lower bound -- Enumerating p-groups: upper bounds -- Some more preliminaries -- Group extensions and cohomology -- Some representation theory -- Primitive soluble linear groups -- The orders of groups -- Conjugacy classes of maximal soluble subgroups of symmetric groups -- Enumeration of finite groups with abelian Sylow subgroups -- Maximal soluble linear groups -- Conjugacy classes of maximal soluble subgroups of the general linear groups -- Pyber's theorem: the soluble case -- Pyber's theorem: the general case -- Enumeration within varieties of abelian groups -- Enumeration within small varieties of A-groups -- Enumeration within small varieties of p-groups How many groups of order n are there? This is a natural question for anyone studying group theory, and this Tract provides an exhaustive and up-to-date account of research into this question spanning almost fifty years. The authors presuppose an undergraduate knowledge of group theory, up to and including Sylow's Theorems, a little knowledge of how a group may be presented by generators and relations, a very little representation theory from the perspective of module theory, and a very little cohomology theory - but most of the basics are expounded here and the book is more or less self-contained. Although it is principally devoted to a connected exposition of an agreeable theory, the book does also contain some material that has not hitherto been published. It is designed to be used as a graduate text but also as a handbook for established research workers in group theory Finite groups Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Abzählen (DE-588)4508960-7 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Abzählen (DE-588)4508960-7 s DE-604 Neumann, Peter M. 1940-2020 Sonstige (DE-588)1019198230 oth Venkataraman, Geetha Sonstige oth Erscheint auch als Druck-Ausgabe 978-0-521-88217-0 https://doi.org/10.1017/CBO9780511542756 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Blackburn, Simon R. Enumeration of finite groups Some basic observations -- Preliminaries -- Enumerating p-groups: a lower bound -- Enumerating p-groups: upper bounds -- Some more preliminaries -- Group extensions and cohomology -- Some representation theory -- Primitive soluble linear groups -- The orders of groups -- Conjugacy classes of maximal soluble subgroups of symmetric groups -- Enumeration of finite groups with abelian Sylow subgroups -- Maximal soluble linear groups -- Conjugacy classes of maximal soluble subgroups of the general linear groups -- Pyber's theorem: the soluble case -- Pyber's theorem: the general case -- Enumeration within varieties of abelian groups -- Enumeration within small varieties of A-groups -- Enumeration within small varieties of p-groups Finite groups Endliche Gruppe (DE-588)4014651-0 gnd Abzählen (DE-588)4508960-7 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4508960-7 |
title | Enumeration of finite groups |
title_auth | Enumeration of finite groups |
title_exact_search | Enumeration of finite groups |
title_full | Enumeration of finite groups Simon R. Blackburn, Peter M. Neumann, Geetha Venkataraman |
title_fullStr | Enumeration of finite groups Simon R. Blackburn, Peter M. Neumann, Geetha Venkataraman |
title_full_unstemmed | Enumeration of finite groups Simon R. Blackburn, Peter M. Neumann, Geetha Venkataraman |
title_short | Enumeration of finite groups |
title_sort | enumeration of finite groups |
topic | Finite groups Endliche Gruppe (DE-588)4014651-0 gnd Abzählen (DE-588)4508960-7 gnd |
topic_facet | Finite groups Endliche Gruppe Abzählen |
url | https://doi.org/10.1017/CBO9780511542756 |
work_keys_str_mv | AT blackburnsimonr enumerationoffinitegroups AT neumannpeterm enumerationoffinitegroups AT venkataramangeetha enumerationoffinitegroups |