Geometric applications of Fourier series and spherical harmonics:
This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1996
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 61 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 329 pages) |
ISBN: | 9780511530005 |
DOI: | 10.1017/CBO9780511530005 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941635 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1996 |||| o||u| ||||||eng d | ||
020 | |a 9780511530005 |c Online |9 978-0-511-53000-5 | ||
024 | 7 | |a 10.1017/CBO9780511530005 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511530005 | ||
035 | |a (OCoLC)859642667 | ||
035 | |a (DE-599)BVBBV043941635 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.2433 |2 20 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Groemer, H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric applications of Fourier series and spherical harmonics |c H. Groemer |
246 | 1 | 3 | |a Geometric Applications of Fourier Series & Spherical Harmonics |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1996 | |
300 | |a 1 online resource (xi, 329 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 61 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Analytic Preparations -- 2. Geometric Preparations -- 3. Fourier Series and Spherical Harmonics -- 4. Geometric Applications of Fourier Series -- 5. Geometric Applications of Spherical Harmonics | |
520 | |a This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics | ||
650 | 4 | |a Convex sets | |
650 | 4 | |a Fourier series | |
650 | 4 | |a Spherical harmonics | |
650 | 0 | 7 | |a Fourier-Reihe |0 (DE-588)4155109-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexer Körper |0 (DE-588)4165214-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexer Körper |0 (DE-588)4165214-9 |D s |
689 | 0 | 1 | |a Fourier-Reihe |0 (DE-588)4155109-6 |D s |
689 | 0 | 2 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-11965-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-47318-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511530005 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350605 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511530005 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511530005 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883649085440 |
---|---|
any_adam_object | |
author | Groemer, H. |
author_facet | Groemer, H. |
author_role | aut |
author_sort | Groemer, H. |
author_variant | h g hg |
building | Verbundindex |
bvnumber | BV043941635 |
classification_rvk | SK 450 |
collection | ZDB-20-CBO |
contents | 1. Analytic Preparations -- 2. Geometric Preparations -- 3. Fourier Series and Spherical Harmonics -- 4. Geometric Applications of Fourier Series -- 5. Geometric Applications of Spherical Harmonics |
ctrlnum | (ZDB-20-CBO)CR9780511530005 (OCoLC)859642667 (DE-599)BVBBV043941635 |
dewey-full | 515/.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.2433 |
dewey-search | 515/.2433 |
dewey-sort | 3515 42433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511530005 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03305nmm a2200565zcb4500</leader><controlfield tag="001">BV043941635</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511530005</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-53000-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511530005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511530005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859642667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941635</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2433</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Groemer, H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric applications of Fourier series and spherical harmonics</subfield><subfield code="c">H. Groemer</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Geometric Applications of Fourier Series & Spherical Harmonics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 329 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 61</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Analytic Preparations -- 2. Geometric Preparations -- 3. Fourier Series and Spherical Harmonics -- 4. Geometric Applications of Fourier Series -- 5. Geometric Applications of Spherical Harmonics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical harmonics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexer Körper</subfield><subfield code="0">(DE-588)4165214-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexer Körper</subfield><subfield code="0">(DE-588)4165214-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-11965-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-47318-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511530005</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350605</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511530005</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511530005</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941635 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511530005 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350605 |
oclc_num | 859642667 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 329 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Groemer, H. Verfasser aut Geometric applications of Fourier series and spherical harmonics H. Groemer Geometric Applications of Fourier Series & Spherical Harmonics Cambridge Cambridge University Press 1996 1 online resource (xi, 329 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 61 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Analytic Preparations -- 2. Geometric Preparations -- 3. Fourier Series and Spherical Harmonics -- 4. Geometric Applications of Fourier Series -- 5. Geometric Applications of Spherical Harmonics This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics Convex sets Fourier series Spherical harmonics Fourier-Reihe (DE-588)4155109-6 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Konvexer Körper (DE-588)4165214-9 gnd rswk-swf Konvexer Körper (DE-588)4165214-9 s Fourier-Reihe (DE-588)4155109-6 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-11965-8 Erscheint auch als Druckausgabe 978-0-521-47318-7 https://doi.org/10.1017/CBO9780511530005 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Groemer, H. Geometric applications of Fourier series and spherical harmonics 1. Analytic Preparations -- 2. Geometric Preparations -- 3. Fourier Series and Spherical Harmonics -- 4. Geometric Applications of Fourier Series -- 5. Geometric Applications of Spherical Harmonics Convex sets Fourier series Spherical harmonics Fourier-Reihe (DE-588)4155109-6 gnd Harmonische Analyse (DE-588)4023453-8 gnd Konvexer Körper (DE-588)4165214-9 gnd |
subject_GND | (DE-588)4155109-6 (DE-588)4023453-8 (DE-588)4165214-9 |
title | Geometric applications of Fourier series and spherical harmonics |
title_alt | Geometric Applications of Fourier Series & Spherical Harmonics |
title_auth | Geometric applications of Fourier series and spherical harmonics |
title_exact_search | Geometric applications of Fourier series and spherical harmonics |
title_full | Geometric applications of Fourier series and spherical harmonics H. Groemer |
title_fullStr | Geometric applications of Fourier series and spherical harmonics H. Groemer |
title_full_unstemmed | Geometric applications of Fourier series and spherical harmonics H. Groemer |
title_short | Geometric applications of Fourier series and spherical harmonics |
title_sort | geometric applications of fourier series and spherical harmonics |
topic | Convex sets Fourier series Spherical harmonics Fourier-Reihe (DE-588)4155109-6 gnd Harmonische Analyse (DE-588)4023453-8 gnd Konvexer Körper (DE-588)4165214-9 gnd |
topic_facet | Convex sets Fourier series Spherical harmonics Fourier-Reihe Harmonische Analyse Konvexer Körper |
url | https://doi.org/10.1017/CBO9780511530005 |
work_keys_str_mv | AT groemerh geometricapplicationsoffourierseriesandsphericalharmonics AT groemerh geometricapplicationsoffourierseriessphericalharmonics |