Multiplicities and Chern classes in local algebra:
The theory of local Chern characters used in commutative algebra originated in topology some years ago, and from there was introduced in algebraic geometry. This book describes the theory in an algebraic setting, presenting research results and important algebraic applications, some of which come fr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | Cambridge tracts in mathematics
133 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The theory of local Chern characters used in commutative algebra originated in topology some years ago, and from there was introduced in algebraic geometry. This book describes the theory in an algebraic setting, presenting research results and important algebraic applications, some of which come from the author's own work. It concentrates on the background in commutative algebra and homological algebra and describes the relations between these subjects, including extensive discussions of the homological conjectures and of the use of the Frobenius map |
Beschreibung: | 1 Online-Ressource (xi, 303 Seiten) |
ISBN: | 9780511529986 |
DOI: | 10.1017/CBO9780511529986 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941634 | ||
003 | DE-604 | ||
005 | 20220615 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780511529986 |c Online |9 978-0-511-52998-6 | ||
024 | 7 | |a 10.1017/CBO9780511529986 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511529986 | ||
035 | |a (OCoLC)849921039 | ||
035 | |a (DE-599)BVBBV043941634 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.24 |2 21 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Roberts, Paul |d 1945- |e Verfasser |0 (DE-588)1192460677 |4 aut | |
245 | 1 | 0 | |a Multiplicities and Chern classes in local algebra |c Paul C. Roberts |
246 | 1 | 3 | |a Multiplicities & Chern Classes in Local Algebra |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 Online-Ressource (xi, 303 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 133 | |
505 | 8 | |a Prime ideals and the Chow group -- Graded rings and Samuel multiplicity -- Complexes and derived functors -- Homological properties of rings and modules -- Intersection multiplicities -- The homological conjectures -- The Frobenius map -- Projective schemes -- Chern classes of locally free sheaves -- The Grassmannian -- Local Chern characters -- Properties of local Chern characters -- Applications and examples | |
520 | |a The theory of local Chern characters used in commutative algebra originated in topology some years ago, and from there was introduced in algebraic geometry. This book describes the theory in an algebraic setting, presenting research results and important algebraic applications, some of which come from the author's own work. It concentrates on the background in commutative algebra and homological algebra and describes the relations between these subjects, including extensive discussions of the homological conjectures and of the use of the Frobenius map | ||
650 | 4 | |a Multiplicity (Mathematics) | |
650 | 4 | |a Chern classes | |
650 | 4 | |a Commutative algebra | |
650 | 0 | 7 | |a Chern-Klasse |0 (DE-588)4306750-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multiplizität |g Mathematik |0 (DE-588)4200398-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 0 | 1 | |a Multiplizität |g Mathematik |0 (DE-588)4200398-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 1 | 1 | |a Chern-Klasse |0 (DE-588)4306750-5 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-47316-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-06583-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511529986 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350604 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511529986 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511529986 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511529986 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883645939712 |
---|---|
any_adam_object | |
author | Roberts, Paul 1945- |
author_GND | (DE-588)1192460677 |
author_facet | Roberts, Paul 1945- |
author_role | aut |
author_sort | Roberts, Paul 1945- |
author_variant | p r pr |
building | Verbundindex |
bvnumber | BV043941634 |
classification_rvk | SK 230 SK 240 |
collection | ZDB-20-CBO |
contents | Prime ideals and the Chow group -- Graded rings and Samuel multiplicity -- Complexes and derived functors -- Homological properties of rings and modules -- Intersection multiplicities -- The homological conjectures -- The Frobenius map -- Projective schemes -- Chern classes of locally free sheaves -- The Grassmannian -- Local Chern characters -- Properties of local Chern characters -- Applications and examples |
ctrlnum | (ZDB-20-CBO)CR9780511529986 (OCoLC)849921039 (DE-599)BVBBV043941634 |
dewey-full | 512/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.24 |
dewey-search | 512/.24 |
dewey-sort | 3512 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511529986 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03366nmm a2200589zcb4500</leader><controlfield tag="001">BV043941634</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220615 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511529986</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52998-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511529986</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511529986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849921039</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941634</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.24</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roberts, Paul</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1192460677</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicities and Chern classes in local algebra</subfield><subfield code="c">Paul C. Roberts</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Multiplicities & Chern Classes in Local Algebra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 303 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">133</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Prime ideals and the Chow group -- Graded rings and Samuel multiplicity -- Complexes and derived functors -- Homological properties of rings and modules -- Intersection multiplicities -- The homological conjectures -- The Frobenius map -- Projective schemes -- Chern classes of locally free sheaves -- The Grassmannian -- Local Chern characters -- Properties of local Chern characters -- Applications and examples</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of local Chern characters used in commutative algebra originated in topology some years ago, and from there was introduced in algebraic geometry. This book describes the theory in an algebraic setting, presenting research results and important algebraic applications, some of which come from the author's own work. It concentrates on the background in commutative algebra and homological algebra and describes the relations between these subjects, including extensive discussions of the homological conjectures and of the use of the Frobenius map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiplicity (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chern classes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chern-Klasse</subfield><subfield code="0">(DE-588)4306750-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multiplizität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200398-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Multiplizität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200398-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chern-Klasse</subfield><subfield code="0">(DE-588)4306750-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-47316-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-06583-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511529986</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350604</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511529986</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511529986</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511529986</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941634 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511529986 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350604 |
oclc_num | 849921039 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xi, 303 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Roberts, Paul 1945- Verfasser (DE-588)1192460677 aut Multiplicities and Chern classes in local algebra Paul C. Roberts Multiplicities & Chern Classes in Local Algebra Cambridge Cambridge University Press 1998 1 Online-Ressource (xi, 303 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 133 Prime ideals and the Chow group -- Graded rings and Samuel multiplicity -- Complexes and derived functors -- Homological properties of rings and modules -- Intersection multiplicities -- The homological conjectures -- The Frobenius map -- Projective schemes -- Chern classes of locally free sheaves -- The Grassmannian -- Local Chern characters -- Properties of local Chern characters -- Applications and examples The theory of local Chern characters used in commutative algebra originated in topology some years ago, and from there was introduced in algebraic geometry. This book describes the theory in an algebraic setting, presenting research results and important algebraic applications, some of which come from the author's own work. It concentrates on the background in commutative algebra and homological algebra and describes the relations between these subjects, including extensive discussions of the homological conjectures and of the use of the Frobenius map Multiplicity (Mathematics) Chern classes Commutative algebra Chern-Klasse (DE-588)4306750-5 gnd rswk-swf Multiplizität Mathematik (DE-588)4200398-2 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 s Multiplizität Mathematik (DE-588)4200398-2 s DE-604 Chern-Klasse (DE-588)4306750-5 s Erscheint auch als Druck-Ausgabe 978-0-521-47316-3 Erscheint auch als Druck-Ausgabe 978-0-521-06583-2 https://doi.org/10.1017/CBO9780511529986 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Roberts, Paul 1945- Multiplicities and Chern classes in local algebra Prime ideals and the Chow group -- Graded rings and Samuel multiplicity -- Complexes and derived functors -- Homological properties of rings and modules -- Intersection multiplicities -- The homological conjectures -- The Frobenius map -- Projective schemes -- Chern classes of locally free sheaves -- The Grassmannian -- Local Chern characters -- Properties of local Chern characters -- Applications and examples Multiplicity (Mathematics) Chern classes Commutative algebra Chern-Klasse (DE-588)4306750-5 gnd Multiplizität Mathematik (DE-588)4200398-2 gnd Kommutative Algebra (DE-588)4164821-3 gnd |
subject_GND | (DE-588)4306750-5 (DE-588)4200398-2 (DE-588)4164821-3 |
title | Multiplicities and Chern classes in local algebra |
title_alt | Multiplicities & Chern Classes in Local Algebra |
title_auth | Multiplicities and Chern classes in local algebra |
title_exact_search | Multiplicities and Chern classes in local algebra |
title_full | Multiplicities and Chern classes in local algebra Paul C. Roberts |
title_fullStr | Multiplicities and Chern classes in local algebra Paul C. Roberts |
title_full_unstemmed | Multiplicities and Chern classes in local algebra Paul C. Roberts |
title_short | Multiplicities and Chern classes in local algebra |
title_sort | multiplicities and chern classes in local algebra |
topic | Multiplicity (Mathematics) Chern classes Commutative algebra Chern-Klasse (DE-588)4306750-5 gnd Multiplizität Mathematik (DE-588)4200398-2 gnd Kommutative Algebra (DE-588)4164821-3 gnd |
topic_facet | Multiplicity (Mathematics) Chern classes Commutative algebra Chern-Klasse Multiplizität Mathematik Kommutative Algebra |
url | https://doi.org/10.1017/CBO9780511529986 |
work_keys_str_mv | AT robertspaul multiplicitiesandchernclassesinlocalalgebra AT robertspaul multiplicitieschernclassesinlocalalgebra |