Clifford algebras and spinors:
In this book, Professor Lounesto offers a unique introduction to Clifford algebras and spinors. The initial chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2001
|
Ausgabe: | Second edition |
Schriftenreihe: | London Mathematical Society lecture note series
286 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | In this book, Professor Lounesto offers a unique introduction to Clifford algebras and spinors. The initial chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This book also gives the first comprehensive survey of recent research on Clifford algebras. A new classification of spinors is introduced, based on bilinear covariants of physical observables. This reveals a new class of spinors, residing between the Weyl, Majorana and Dirac spinors. Scalar products of spinors are classified by involutory anti-automorphisms of Clifford algebras. This leads to the chessboard of automorphism groups of scalar products of spinors. On the analytic side, Brauer-Wall groups and Witt rings are discussed, and Caucy's integral formula is generalized to higher dimensions |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 338 pages) |
ISBN: | 9780511526022 |
DOI: | 10.1017/CBO9780511526022 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941627 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2001 |||| o||u| ||||||eng d | ||
020 | |a 9780511526022 |c Online |9 978-0-511-52602-2 | ||
024 | 7 | |a 10.1017/CBO9780511526022 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526022 | ||
035 | |a (OCoLC)847017366 | ||
035 | |a (DE-599)BVBBV043941627 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.57 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Lounesto, Pertti |e Verfasser |4 aut | |
245 | 1 | 0 | |a Clifford algebras and spinors |c Pertti Lounesto |
246 | 1 | 3 | |a Clifford Algebras & Spinors |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2001 | |
300 | |a 1 online resource (ix, 338 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 286 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Vectors and linear spaces |t Complex numbers |t Bivectors and the exterior algebras |t Pauli spin matrices and spinors |t Quaternions |t Fourth dimension |t Cross product |t Elecromagnetism |t Lorentz transformations |t Dirac equation |t Fierz identities and boomerangs |t Flags, poles and dipoles |t Tilt to the opposite metric |t Definitions of the clifford algebra |t Witt rings and brauer groups |t Matrix representations and periodicity of 8 |t Spin groups and spinor spaces |t Scalar products of spinors and the chessboard |t Möbius transformations and vahlen matrices |t Hypercomplex analysis |t Binary index sets and walsh functions |t Chevalley's construction and characteristic 2 |t Octonions and triality |
520 | |a In this book, Professor Lounesto offers a unique introduction to Clifford algebras and spinors. The initial chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This book also gives the first comprehensive survey of recent research on Clifford algebras. A new classification of spinors is introduced, based on bilinear covariants of physical observables. This reveals a new class of spinors, residing between the Weyl, Majorana and Dirac spinors. Scalar products of spinors are classified by involutory anti-automorphisms of Clifford algebras. This leads to the chessboard of automorphism groups of scalar products of spinors. On the analytic side, Brauer-Wall groups and Witt rings are discussed, and Caucy's integral formula is generalized to higher dimensions | ||
650 | 4 | |a Clifford algebras | |
650 | 4 | |a Spinor analysis | |
650 | 0 | 7 | |a Spinoranalysis |0 (DE-588)4182329-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spinor |0 (DE-588)4182327-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 1 | |a Spinor |0 (DE-588)4182327-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 1 | 1 | |a Spinoranalysis |0 (DE-588)4182329-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-00551-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526022 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350597 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511526022 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526022 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883633356800 |
---|---|
any_adam_object | |
author | Lounesto, Pertti |
author_facet | Lounesto, Pertti |
author_role | aut |
author_sort | Lounesto, Pertti |
author_variant | p l pl |
building | Verbundindex |
bvnumber | BV043941627 |
classification_rvk | SI 320 SK 230 SK 340 |
collection | ZDB-20-CBO |
contents | Vectors and linear spaces Complex numbers Bivectors and the exterior algebras Pauli spin matrices and spinors Quaternions Fourth dimension Cross product Elecromagnetism Lorentz transformations Dirac equation Fierz identities and boomerangs Flags, poles and dipoles Tilt to the opposite metric Definitions of the clifford algebra Witt rings and brauer groups Matrix representations and periodicity of 8 Spin groups and spinor spaces Scalar products of spinors and the chessboard Möbius transformations and vahlen matrices Hypercomplex analysis Binary index sets and walsh functions Chevalley's construction and characteristic 2 Octonions and triality |
ctrlnum | (ZDB-20-CBO)CR9780511526022 (OCoLC)847017366 (DE-599)BVBBV043941627 |
dewey-full | 512/.57 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.57 |
dewey-search | 512/.57 |
dewey-sort | 3512 257 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526022 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04080nmm a2200613zcb4500</leader><controlfield tag="001">BV043941627</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526022</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52602-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526022</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847017366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941627</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.57</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lounesto, Pertti</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clifford algebras and spinors</subfield><subfield code="c">Pertti Lounesto</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Clifford Algebras & Spinors</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 338 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">286</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Vectors and linear spaces</subfield><subfield code="t">Complex numbers</subfield><subfield code="t">Bivectors and the exterior algebras</subfield><subfield code="t">Pauli spin matrices and spinors</subfield><subfield code="t">Quaternions</subfield><subfield code="t">Fourth dimension</subfield><subfield code="t">Cross product</subfield><subfield code="t">Elecromagnetism</subfield><subfield code="t">Lorentz transformations</subfield><subfield code="t">Dirac equation</subfield><subfield code="t">Fierz identities and boomerangs</subfield><subfield code="t">Flags, poles and dipoles</subfield><subfield code="t">Tilt to the opposite metric</subfield><subfield code="t">Definitions of the clifford algebra</subfield><subfield code="t">Witt rings and brauer groups</subfield><subfield code="t">Matrix representations and periodicity of 8</subfield><subfield code="t">Spin groups and spinor spaces</subfield><subfield code="t">Scalar products of spinors and the chessboard</subfield><subfield code="t">Möbius transformations and vahlen matrices</subfield><subfield code="t">Hypercomplex analysis</subfield><subfield code="t">Binary index sets and walsh functions</subfield><subfield code="t">Chevalley's construction and characteristic 2</subfield><subfield code="t">Octonions and triality</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book, Professor Lounesto offers a unique introduction to Clifford algebras and spinors. The initial chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This book also gives the first comprehensive survey of recent research on Clifford algebras. A new classification of spinors is introduced, based on bilinear covariants of physical observables. This reveals a new class of spinors, residing between the Weyl, Majorana and Dirac spinors. Scalar products of spinors are classified by involutory anti-automorphisms of Clifford algebras. This leads to the chessboard of automorphism groups of scalar products of spinors. On the analytic side, Brauer-Wall groups and Witt rings are discussed, and Caucy's integral formula is generalized to higher dimensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clifford algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spinor analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spinoranalysis</subfield><subfield code="0">(DE-588)4182329-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spinor</subfield><subfield code="0">(DE-588)4182327-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spinor</subfield><subfield code="0">(DE-588)4182327-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Spinoranalysis</subfield><subfield code="0">(DE-588)4182329-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-00551-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526022</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350597</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526022</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526022</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941627 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511526022 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350597 |
oclc_num | 847017366 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 338 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Lounesto, Pertti Verfasser aut Clifford algebras and spinors Pertti Lounesto Clifford Algebras & Spinors Second edition Cambridge Cambridge University Press 2001 1 online resource (ix, 338 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 286 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Vectors and linear spaces Complex numbers Bivectors and the exterior algebras Pauli spin matrices and spinors Quaternions Fourth dimension Cross product Elecromagnetism Lorentz transformations Dirac equation Fierz identities and boomerangs Flags, poles and dipoles Tilt to the opposite metric Definitions of the clifford algebra Witt rings and brauer groups Matrix representations and periodicity of 8 Spin groups and spinor spaces Scalar products of spinors and the chessboard Möbius transformations and vahlen matrices Hypercomplex analysis Binary index sets and walsh functions Chevalley's construction and characteristic 2 Octonions and triality In this book, Professor Lounesto offers a unique introduction to Clifford algebras and spinors. The initial chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This book also gives the first comprehensive survey of recent research on Clifford algebras. A new classification of spinors is introduced, based on bilinear covariants of physical observables. This reveals a new class of spinors, residing between the Weyl, Majorana and Dirac spinors. Scalar products of spinors are classified by involutory anti-automorphisms of Clifford algebras. This leads to the chessboard of automorphism groups of scalar products of spinors. On the analytic side, Brauer-Wall groups and Witt rings are discussed, and Caucy's integral formula is generalized to higher dimensions Clifford algebras Spinor analysis Spinoranalysis (DE-588)4182329-1 gnd rswk-swf Spinor (DE-588)4182327-8 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 s Spinor (DE-588)4182327-8 s 1\p DE-604 Spinoranalysis (DE-588)4182329-1 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-00551-7 https://doi.org/10.1017/CBO9780511526022 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lounesto, Pertti Clifford algebras and spinors Vectors and linear spaces Complex numbers Bivectors and the exterior algebras Pauli spin matrices and spinors Quaternions Fourth dimension Cross product Elecromagnetism Lorentz transformations Dirac equation Fierz identities and boomerangs Flags, poles and dipoles Tilt to the opposite metric Definitions of the clifford algebra Witt rings and brauer groups Matrix representations and periodicity of 8 Spin groups and spinor spaces Scalar products of spinors and the chessboard Möbius transformations and vahlen matrices Hypercomplex analysis Binary index sets and walsh functions Chevalley's construction and characteristic 2 Octonions and triality Clifford algebras Spinor analysis Spinoranalysis (DE-588)4182329-1 gnd Spinor (DE-588)4182327-8 gnd Clifford-Algebra (DE-588)4199958-7 gnd |
subject_GND | (DE-588)4182329-1 (DE-588)4182327-8 (DE-588)4199958-7 |
title | Clifford algebras and spinors |
title_alt | Clifford Algebras & Spinors Vectors and linear spaces Complex numbers Bivectors and the exterior algebras Pauli spin matrices and spinors Quaternions Fourth dimension Cross product Elecromagnetism Lorentz transformations Dirac equation Fierz identities and boomerangs Flags, poles and dipoles Tilt to the opposite metric Definitions of the clifford algebra Witt rings and brauer groups Matrix representations and periodicity of 8 Spin groups and spinor spaces Scalar products of spinors and the chessboard Möbius transformations and vahlen matrices Hypercomplex analysis Binary index sets and walsh functions Chevalley's construction and characteristic 2 Octonions and triality |
title_auth | Clifford algebras and spinors |
title_exact_search | Clifford algebras and spinors |
title_full | Clifford algebras and spinors Pertti Lounesto |
title_fullStr | Clifford algebras and spinors Pertti Lounesto |
title_full_unstemmed | Clifford algebras and spinors Pertti Lounesto |
title_short | Clifford algebras and spinors |
title_sort | clifford algebras and spinors |
topic | Clifford algebras Spinor analysis Spinoranalysis (DE-588)4182329-1 gnd Spinor (DE-588)4182327-8 gnd Clifford-Algebra (DE-588)4199958-7 gnd |
topic_facet | Clifford algebras Spinor analysis Spinoranalysis Spinor Clifford-Algebra |
url | https://doi.org/10.1017/CBO9780511526022 |
work_keys_str_mv | AT lounestopertti cliffordalgebrasandspinors AT lounestopertti cliffordalgebrasspinors |