An introduction to maximum principles and symmetry in elliptic problems:
Originally published in 2000, this was the first book to present the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2000
|
Schriftenreihe: | Cambridge tracts in mathematics
128 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Originally published in 2000, this was the first book to present the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of non-linear elliptic equations. Gidas, Ni and Nirenberg, building on work of Alexandrov and of Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. Results are presented with minimal prerequisites in a style suited to graduate students. Two long and leisurely appendices give basic facts about the Laplace and Poisson equations. There is a plentiful supply of exercises, with detailed hints |
Beschreibung: | 1 Online-Ressource (x, 340 Seiten) |
ISBN: | 9780511569203 |
DOI: | 10.1017/CBO9780511569203 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941611 | ||
003 | DE-604 | ||
005 | 20190328 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780511569203 |c Online |9 978-0-511-56920-3 | ||
024 | 7 | |a 10.1017/CBO9780511569203 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511569203 | ||
035 | |a (OCoLC)850670710 | ||
035 | |a (DE-599)BVBBV043941611 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515.353 |2 21 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Fraenkel, L. Edward |d 1927-2019 |e Verfasser |0 (DE-588)143989944 |4 aut | |
245 | 1 | 0 | |a An introduction to maximum principles and symmetry in elliptic problems |c L.E. Fraenkel |
246 | 1 | 3 | |a An Introduction to Maximum Principles & Symmetry in Elliptic Problems |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 Online-Ressource (x, 340 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 128 | |
505 | 8 | |a Some Notation, Terminology and Basic Calculus -- 1. Introduction -- 2. Some Maximum Principles for Elliptic Equations -- 3. Symmetry for a Non-linear Poisson Equation in a Symmetric Set [Omega] -- 4. Symmetry for the Non-linear Poisson Equation in R[superscript N] -- 5. Monotonicity of Positive Solutions in a Bounded Set [Omega] -- App. A. On the Newtonian Potential -- App. B. Rudimentary Facts about Harmonic Functions and the Poisson Equation -- App. C. Construction of the Primary Function of Siegel Type -- App. D. On the Divergence Theorem and Related Matters -- App. E. The Edge-Point Lemma | |
520 | |a Originally published in 2000, this was the first book to present the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of non-linear elliptic equations. Gidas, Ni and Nirenberg, building on work of Alexandrov and of Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. Results are presented with minimal prerequisites in a style suited to graduate students. Two long and leisurely appendices give basic facts about the Laplace and Poisson equations. There is a plentiful supply of exercises, with detailed hints | ||
650 | 4 | |a Differential equations, Elliptic | |
650 | 4 | |a Maximum principles (Mathematics) | |
650 | 4 | |a Differential equations, Elliptic / Problems, exercises, etc | |
650 | 4 | |a Symmetry | |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maximumprinzip |0 (DE-588)4169165-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | 1 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 0 | 2 | |a Maximumprinzip |0 (DE-588)4169165-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-46195-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-17278-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511569203 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350581 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511569203 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569203 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511569203 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883603996672 |
---|---|
any_adam_object | |
author | Fraenkel, L. Edward 1927-2019 |
author_GND | (DE-588)143989944 |
author_facet | Fraenkel, L. Edward 1927-2019 |
author_role | aut |
author_sort | Fraenkel, L. Edward 1927-2019 |
author_variant | l e f le lef |
building | Verbundindex |
bvnumber | BV043941611 |
classification_rvk | SK 560 |
collection | ZDB-20-CBO |
contents | Some Notation, Terminology and Basic Calculus -- 1. Introduction -- 2. Some Maximum Principles for Elliptic Equations -- 3. Symmetry for a Non-linear Poisson Equation in a Symmetric Set [Omega] -- 4. Symmetry for the Non-linear Poisson Equation in R[superscript N] -- 5. Monotonicity of Positive Solutions in a Bounded Set [Omega] -- App. A. On the Newtonian Potential -- App. B. Rudimentary Facts about Harmonic Functions and the Poisson Equation -- App. C. Construction of the Primary Function of Siegel Type -- App. D. On the Divergence Theorem and Related Matters -- App. E. The Edge-Point Lemma |
ctrlnum | (ZDB-20-CBO)CR9780511569203 (OCoLC)850670710 (DE-599)BVBBV043941611 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511569203 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03960nmm a2200565zcb4500</leader><controlfield tag="001">BV043941611</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190328 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511569203</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56920-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511569203</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511569203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850670710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941611</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fraenkel, L. Edward</subfield><subfield code="d">1927-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143989944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to maximum principles and symmetry in elliptic problems</subfield><subfield code="c">L.E. Fraenkel</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">An Introduction to Maximum Principles & Symmetry in Elliptic Problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 340 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">128</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Some Notation, Terminology and Basic Calculus -- 1. Introduction -- 2. Some Maximum Principles for Elliptic Equations -- 3. Symmetry for a Non-linear Poisson Equation in a Symmetric Set [Omega] -- 4. Symmetry for the Non-linear Poisson Equation in R[superscript N] -- 5. Monotonicity of Positive Solutions in a Bounded Set [Omega] -- App. A. On the Newtonian Potential -- App. B. Rudimentary Facts about Harmonic Functions and the Poisson Equation -- App. C. Construction of the Primary Function of Siegel Type -- App. D. On the Divergence Theorem and Related Matters -- App. E. The Edge-Point Lemma</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Originally published in 2000, this was the first book to present the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of non-linear elliptic equations. Gidas, Ni and Nirenberg, building on work of Alexandrov and of Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. Results are presented with minimal prerequisites in a style suited to graduate students. Two long and leisurely appendices give basic facts about the Laplace and Poisson equations. There is a plentiful supply of exercises, with detailed hints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum principles (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maximumprinzip</subfield><subfield code="0">(DE-588)4169165-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maximumprinzip</subfield><subfield code="0">(DE-588)4169165-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-46195-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-17278-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511569203</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350581</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569203</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569203</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511569203</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941611 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511569203 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350581 |
oclc_num | 850670710 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (x, 340 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Fraenkel, L. Edward 1927-2019 Verfasser (DE-588)143989944 aut An introduction to maximum principles and symmetry in elliptic problems L.E. Fraenkel An Introduction to Maximum Principles & Symmetry in Elliptic Problems Cambridge Cambridge University Press 2000 1 Online-Ressource (x, 340 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 128 Some Notation, Terminology and Basic Calculus -- 1. Introduction -- 2. Some Maximum Principles for Elliptic Equations -- 3. Symmetry for a Non-linear Poisson Equation in a Symmetric Set [Omega] -- 4. Symmetry for the Non-linear Poisson Equation in R[superscript N] -- 5. Monotonicity of Positive Solutions in a Bounded Set [Omega] -- App. A. On the Newtonian Potential -- App. B. Rudimentary Facts about Harmonic Functions and the Poisson Equation -- App. C. Construction of the Primary Function of Siegel Type -- App. D. On the Divergence Theorem and Related Matters -- App. E. The Edge-Point Lemma Originally published in 2000, this was the first book to present the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of non-linear elliptic equations. Gidas, Ni and Nirenberg, building on work of Alexandrov and of Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. Results are presented with minimal prerequisites in a style suited to graduate students. Two long and leisurely appendices give basic facts about the Laplace and Poisson equations. There is a plentiful supply of exercises, with detailed hints Differential equations, Elliptic Maximum principles (Mathematics) Differential equations, Elliptic / Problems, exercises, etc Symmetry Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Maximumprinzip (DE-588)4169165-9 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 s Symmetrie (DE-588)4058724-1 s Maximumprinzip (DE-588)4169165-9 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-46195-5 Erscheint auch als Druck-Ausgabe 978-0-521-17278-3 https://doi.org/10.1017/CBO9780511569203 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Fraenkel, L. Edward 1927-2019 An introduction to maximum principles and symmetry in elliptic problems Some Notation, Terminology and Basic Calculus -- 1. Introduction -- 2. Some Maximum Principles for Elliptic Equations -- 3. Symmetry for a Non-linear Poisson Equation in a Symmetric Set [Omega] -- 4. Symmetry for the Non-linear Poisson Equation in R[superscript N] -- 5. Monotonicity of Positive Solutions in a Bounded Set [Omega] -- App. A. On the Newtonian Potential -- App. B. Rudimentary Facts about Harmonic Functions and the Poisson Equation -- App. C. Construction of the Primary Function of Siegel Type -- App. D. On the Divergence Theorem and Related Matters -- App. E. The Edge-Point Lemma Differential equations, Elliptic Maximum principles (Mathematics) Differential equations, Elliptic / Problems, exercises, etc Symmetry Elliptische Differentialgleichung (DE-588)4014485-9 gnd Symmetrie (DE-588)4058724-1 gnd Maximumprinzip (DE-588)4169165-9 gnd |
subject_GND | (DE-588)4014485-9 (DE-588)4058724-1 (DE-588)4169165-9 |
title | An introduction to maximum principles and symmetry in elliptic problems |
title_alt | An Introduction to Maximum Principles & Symmetry in Elliptic Problems |
title_auth | An introduction to maximum principles and symmetry in elliptic problems |
title_exact_search | An introduction to maximum principles and symmetry in elliptic problems |
title_full | An introduction to maximum principles and symmetry in elliptic problems L.E. Fraenkel |
title_fullStr | An introduction to maximum principles and symmetry in elliptic problems L.E. Fraenkel |
title_full_unstemmed | An introduction to maximum principles and symmetry in elliptic problems L.E. Fraenkel |
title_short | An introduction to maximum principles and symmetry in elliptic problems |
title_sort | an introduction to maximum principles and symmetry in elliptic problems |
topic | Differential equations, Elliptic Maximum principles (Mathematics) Differential equations, Elliptic / Problems, exercises, etc Symmetry Elliptische Differentialgleichung (DE-588)4014485-9 gnd Symmetrie (DE-588)4058724-1 gnd Maximumprinzip (DE-588)4169165-9 gnd |
topic_facet | Differential equations, Elliptic Maximum principles (Mathematics) Differential equations, Elliptic / Problems, exercises, etc Symmetry Elliptische Differentialgleichung Symmetrie Maximumprinzip |
url | https://doi.org/10.1017/CBO9780511569203 |
work_keys_str_mv | AT fraenkelledward anintroductiontomaximumprinciplesandsymmetryinellipticproblems AT fraenkelledward anintroductiontomaximumprinciplessymmetryinellipticproblems |