Free ideal rings and localization in general rings:
Proving that a polynomial ring in one variable over a field is a principal ideal domain can be done by means of the Euclidean algorithm, but this does not extend to more variables. However, if the variables are not allowed to commute, giving a free associative algebra, then there is a generalization...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2006
|
Schriftenreihe: | New mathematical monographs
3 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Proving that a polynomial ring in one variable over a field is a principal ideal domain can be done by means of the Euclidean algorithm, but this does not extend to more variables. However, if the variables are not allowed to commute, giving a free associative algebra, then there is a generalization, the weak algorithm, which can be used to prove that all one-sided ideals are free. This book presents the theory of free ideal rings (firs) in detail. Particular emphasis is placed on rings with a weak algorithm, exemplified by free associative algebras. There is also a full account of localization which is treated for general rings but the features arising in firs are given special attention. Each section has a number of exercises, including some open problems, and each chapter ends in a historical note |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxii, 572 pages) |
ISBN: | 9780511542794 |
DOI: | 10.1017/CBO9780511542794 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941610 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780511542794 |c Online |9 978-0-511-54279-4 | ||
024 | 7 | |a 10.1017/CBO9780511542794 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511542794 | ||
035 | |a (OCoLC)850057569 | ||
035 | |a (DE-599)BVBBV043941610 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.4 |2 22 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
100 | 1 | |a Cohn, P. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Free ideal rings and localization in general rings |c P.M. Cohn |
246 | 1 | 3 | |a Free Ideal Rings & Localization in General Rings |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2006 | |
300 | |a 1 online resource (xxii, 572 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 3 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Generalities on rings and modules |g 1 |t Principal ideal domains |g 2 |t Firs, semifirs and the weak algorithm |g 3 |t Factorization in semifirs |g 4 |t Rings with a distributive factor lattice |g 5 |t Modules over firs and semifirs |g 6 |t Centralizers and subalgebras |g 7 |t Skew fields of fractions |
520 | |a Proving that a polynomial ring in one variable over a field is a principal ideal domain can be done by means of the Euclidean algorithm, but this does not extend to more variables. However, if the variables are not allowed to commute, giving a free associative algebra, then there is a generalization, the weak algorithm, which can be used to prove that all one-sided ideals are free. This book presents the theory of free ideal rings (firs) in detail. Particular emphasis is placed on rings with a weak algorithm, exemplified by free associative algebras. There is also a full account of localization which is treated for general rings but the features arising in firs are given special attention. Each section has a number of exercises, including some open problems, and each chapter ends in a historical note | ||
650 | 4 | |a Rings (Algebra) | |
650 | 4 | |a Ideals (Algebra) | |
650 | 4 | |a Associative algebras | |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-85337-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511542794 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350580 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511542794 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511542794 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883599802368 |
---|---|
any_adam_object | |
author | Cohn, P. M. |
author_facet | Cohn, P. M. |
author_role | aut |
author_sort | Cohn, P. M. |
author_variant | p m c pm pmc |
building | Verbundindex |
bvnumber | BV043941610 |
classification_rvk | SK 430 |
collection | ZDB-20-CBO |
contents | Generalities on rings and modules Principal ideal domains Firs, semifirs and the weak algorithm Factorization in semifirs Rings with a distributive factor lattice Modules over firs and semifirs Centralizers and subalgebras Skew fields of fractions |
ctrlnum | (ZDB-20-CBO)CR9780511542794 (OCoLC)850057569 (DE-599)BVBBV043941610 |
dewey-full | 512.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.4 |
dewey-search | 512.4 |
dewey-sort | 3512.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511542794 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02987nmm a2200505zcb4500</leader><controlfield tag="001">BV043941610</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511542794</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54279-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511542794</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511542794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850057569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941610</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohn, P. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Free ideal rings and localization in general rings</subfield><subfield code="c">P.M. Cohn</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Free Ideal Rings & Localization in General Rings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 572 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Generalities on rings and modules</subfield><subfield code="g">1</subfield><subfield code="t">Principal ideal domains</subfield><subfield code="g">2</subfield><subfield code="t">Firs, semifirs and the weak algorithm</subfield><subfield code="g">3</subfield><subfield code="t">Factorization in semifirs</subfield><subfield code="g">4</subfield><subfield code="t">Rings with a distributive factor lattice</subfield><subfield code="g">5</subfield><subfield code="t">Modules over firs and semifirs</subfield><subfield code="g">6</subfield><subfield code="t">Centralizers and subalgebras</subfield><subfield code="g">7</subfield><subfield code="t">Skew fields of fractions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Proving that a polynomial ring in one variable over a field is a principal ideal domain can be done by means of the Euclidean algorithm, but this does not extend to more variables. However, if the variables are not allowed to commute, giving a free associative algebra, then there is a generalization, the weak algorithm, which can be used to prove that all one-sided ideals are free. This book presents the theory of free ideal rings (firs) in detail. Particular emphasis is placed on rings with a weak algorithm, exemplified by free associative algebras. There is also a full account of localization which is treated for general rings but the features arising in firs are given special attention. Each section has a number of exercises, including some open problems, and each chapter ends in a historical note</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideals (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-85337-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511542794</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350580</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542794</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542794</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941610 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:16Z |
institution | BVB |
isbn | 9780511542794 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350580 |
oclc_num | 850057569 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxii, 572 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Cohn, P. M. Verfasser aut Free ideal rings and localization in general rings P.M. Cohn Free Ideal Rings & Localization in General Rings Cambridge Cambridge University Press 2006 1 online resource (xxii, 572 pages) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 3 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Generalities on rings and modules 1 Principal ideal domains 2 Firs, semifirs and the weak algorithm 3 Factorization in semifirs 4 Rings with a distributive factor lattice 5 Modules over firs and semifirs 6 Centralizers and subalgebras 7 Skew fields of fractions Proving that a polynomial ring in one variable over a field is a principal ideal domain can be done by means of the Euclidean algorithm, but this does not extend to more variables. However, if the variables are not allowed to commute, giving a free associative algebra, then there is a generalization, the weak algorithm, which can be used to prove that all one-sided ideals are free. This book presents the theory of free ideal rings (firs) in detail. Particular emphasis is placed on rings with a weak algorithm, exemplified by free associative algebras. There is also a full account of localization which is treated for general rings but the features arising in firs are given special attention. Each section has a number of exercises, including some open problems, and each chapter ends in a historical note Rings (Algebra) Ideals (Algebra) Associative algebras Maßtheorie (DE-588)4074626-4 gnd rswk-swf Maßtheorie (DE-588)4074626-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-85337-8 https://doi.org/10.1017/CBO9780511542794 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohn, P. M. Free ideal rings and localization in general rings Generalities on rings and modules Principal ideal domains Firs, semifirs and the weak algorithm Factorization in semifirs Rings with a distributive factor lattice Modules over firs and semifirs Centralizers and subalgebras Skew fields of fractions Rings (Algebra) Ideals (Algebra) Associative algebras Maßtheorie (DE-588)4074626-4 gnd |
subject_GND | (DE-588)4074626-4 |
title | Free ideal rings and localization in general rings |
title_alt | Free Ideal Rings & Localization in General Rings Generalities on rings and modules Principal ideal domains Firs, semifirs and the weak algorithm Factorization in semifirs Rings with a distributive factor lattice Modules over firs and semifirs Centralizers and subalgebras Skew fields of fractions |
title_auth | Free ideal rings and localization in general rings |
title_exact_search | Free ideal rings and localization in general rings |
title_full | Free ideal rings and localization in general rings P.M. Cohn |
title_fullStr | Free ideal rings and localization in general rings P.M. Cohn |
title_full_unstemmed | Free ideal rings and localization in general rings P.M. Cohn |
title_short | Free ideal rings and localization in general rings |
title_sort | free ideal rings and localization in general rings |
topic | Rings (Algebra) Ideals (Algebra) Associative algebras Maßtheorie (DE-588)4074626-4 gnd |
topic_facet | Rings (Algebra) Ideals (Algebra) Associative algebras Maßtheorie |
url | https://doi.org/10.1017/CBO9780511542794 |
work_keys_str_mv | AT cohnpm freeidealringsandlocalizationingeneralrings AT cohnpm freeidealringslocalizationingeneralrings |