A primer on the Dirichlet space:
The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic acc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schriftenreihe: | Cambridge tracts in mathematics
203 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students |
Beschreibung: | 1 Online-Ressource (xiii, 211 Seiten) |
ISBN: | 9781107239425 |
DOI: | 10.1017/CBO9781107239425 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941555 | ||
003 | DE-604 | ||
005 | 20190328 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781107239425 |c Online |9 978-1-107-23942-5 | ||
024 | 7 | |a 10.1017/CBO9781107239425 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107239425 | ||
035 | |a (OCoLC)894732681 | ||
035 | |a (DE-599)BVBBV043941555 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
100 | 1 | |a El-Fallah, Omar |e Verfasser |0 (DE-588)1073324729 |4 aut | |
245 | 1 | 0 | |a A primer on the Dirichlet space |c Omar El-Fallah, Karim Kellay, Javad Mashreghi, Thomas Ransford |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 Online-Ressource (xiii, 211 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 203 | |
505 | 8 | |a Preface -- Basic notions -- Capacity -- Boundary behavior -- Zero sets -- Multipliers -- Conformal invariance -- Harmonically weighted Dirichlet spaces -- Invariant subspaces -- Cyclicity -- Appendix A. Hardy spaces -- Appendix B. The Hardy-Littlewood maximal function -- Appendix C. Positive definite matrices -- Appendix D. Regularization and the rising-sun lemma | |
520 | |a The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students | ||
650 | 4 | |a Dirichlet principle | |
650 | 4 | |a Hilbert space | |
650 | 4 | |a Holomorphic functions | |
650 | 4 | |a Functions of complex variables | |
650 | 0 | 7 | |a Dirichlet-Raum |0 (DE-588)4621988-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dirichlet-Raum |0 (DE-588)4621988-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-04752-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107239425 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350525 | ||
966 | e | |u https://doi.org/10.1017/CBO9781107239425 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107239425 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107239425 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883453001728 |
---|---|
any_adam_object | |
author | El-Fallah, Omar |
author_GND | (DE-588)1073324729 |
author_facet | El-Fallah, Omar |
author_role | aut |
author_sort | El-Fallah, Omar |
author_variant | o e f oef |
building | Verbundindex |
bvnumber | BV043941555 |
classification_rvk | SK 750 |
collection | ZDB-20-CBO |
contents | Preface -- Basic notions -- Capacity -- Boundary behavior -- Zero sets -- Multipliers -- Conformal invariance -- Harmonically weighted Dirichlet spaces -- Invariant subspaces -- Cyclicity -- Appendix A. Hardy spaces -- Appendix B. The Hardy-Littlewood maximal function -- Appendix C. Positive definite matrices -- Appendix D. Regularization and the rising-sun lemma |
ctrlnum | (ZDB-20-CBO)CR9781107239425 (OCoLC)894732681 (DE-599)BVBBV043941555 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107239425 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03301nmm a2200493zcb4500</leader><controlfield tag="001">BV043941555</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190328 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107239425</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-23942-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107239425</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107239425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)894732681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941555</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">El-Fallah, Omar</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1073324729</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A primer on the Dirichlet space</subfield><subfield code="c">Omar El-Fallah, Karim Kellay, Javad Mashreghi, Thomas Ransford</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 211 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">203</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface -- Basic notions -- Capacity -- Boundary behavior -- Zero sets -- Multipliers -- Conformal invariance -- Harmonically weighted Dirichlet spaces -- Invariant subspaces -- Cyclicity -- Appendix A. Hardy spaces -- Appendix B. The Hardy-Littlewood maximal function -- Appendix C. Positive definite matrices -- Appendix D. Regularization and the rising-sun lemma</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holomorphic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirichlet-Raum</subfield><subfield code="0">(DE-588)4621988-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dirichlet-Raum</subfield><subfield code="0">(DE-588)4621988-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-04752-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107239425</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350525</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107239425</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107239425</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107239425</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941555 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9781107239425 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350525 |
oclc_num | 894732681 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xiii, 211 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | El-Fallah, Omar Verfasser (DE-588)1073324729 aut A primer on the Dirichlet space Omar El-Fallah, Karim Kellay, Javad Mashreghi, Thomas Ransford Cambridge Cambridge University Press 2014 1 Online-Ressource (xiii, 211 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 203 Preface -- Basic notions -- Capacity -- Boundary behavior -- Zero sets -- Multipliers -- Conformal invariance -- Harmonically weighted Dirichlet spaces -- Invariant subspaces -- Cyclicity -- Appendix A. Hardy spaces -- Appendix B. The Hardy-Littlewood maximal function -- Appendix C. Positive definite matrices -- Appendix D. Regularization and the rising-sun lemma The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students Dirichlet principle Hilbert space Holomorphic functions Functions of complex variables Dirichlet-Raum (DE-588)4621988-2 gnd rswk-swf Dirichlet-Raum (DE-588)4621988-2 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-107-04752-5 https://doi.org/10.1017/CBO9781107239425 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | El-Fallah, Omar A primer on the Dirichlet space Preface -- Basic notions -- Capacity -- Boundary behavior -- Zero sets -- Multipliers -- Conformal invariance -- Harmonically weighted Dirichlet spaces -- Invariant subspaces -- Cyclicity -- Appendix A. Hardy spaces -- Appendix B. The Hardy-Littlewood maximal function -- Appendix C. Positive definite matrices -- Appendix D. Regularization and the rising-sun lemma Dirichlet principle Hilbert space Holomorphic functions Functions of complex variables Dirichlet-Raum (DE-588)4621988-2 gnd |
subject_GND | (DE-588)4621988-2 |
title | A primer on the Dirichlet space |
title_auth | A primer on the Dirichlet space |
title_exact_search | A primer on the Dirichlet space |
title_full | A primer on the Dirichlet space Omar El-Fallah, Karim Kellay, Javad Mashreghi, Thomas Ransford |
title_fullStr | A primer on the Dirichlet space Omar El-Fallah, Karim Kellay, Javad Mashreghi, Thomas Ransford |
title_full_unstemmed | A primer on the Dirichlet space Omar El-Fallah, Karim Kellay, Javad Mashreghi, Thomas Ransford |
title_short | A primer on the Dirichlet space |
title_sort | a primer on the dirichlet space |
topic | Dirichlet principle Hilbert space Holomorphic functions Functions of complex variables Dirichlet-Raum (DE-588)4621988-2 gnd |
topic_facet | Dirichlet principle Hilbert space Holomorphic functions Functions of complex variables Dirichlet-Raum |
url | https://doi.org/10.1017/CBO9781107239425 |
work_keys_str_mv | AT elfallahomar aprimeronthedirichletspace |