Product integration with applications to differential equations:
Originally published in 1979, this book shows the beautiful simplifications that can be brought to the theory of differential equations by treating such equations from the product integral viewpoint. The first chapter of the book, dealing with linear ordinary differential equations, should be access...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1984
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 10 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Originally published in 1979, this book shows the beautiful simplifications that can be brought to the theory of differential equations by treating such equations from the product integral viewpoint. The first chapter of the book, dealing with linear ordinary differential equations, should be accessible to anyone with a knowledge of matrix theory and elementary calculus. Later chapters assume more sophistication on the part of the reader. The essential unity of these subjects is illustrated by the fact that the idea of the product integral can be naturally and effectively used to deal with all of them |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxii, 253 pages) |
ISBN: | 9781107340701 |
DOI: | 10.1017/CBO9781107340701 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941547 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1984 |||| o||u| ||||||eng d | ||
020 | |a 9781107340701 |c Online |9 978-1-107-34070-1 | ||
024 | 7 | |a 10.1017/CBO9781107340701 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107340701 | ||
035 | |a (OCoLC)967697195 | ||
035 | |a (DE-599)BVBBV043941547 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515.3/5 |2 19eng | |
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
100 | 1 | |a Dollard, John D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Product integration with applications to differential equations |c John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1984 | |
300 | |a 1 online resource (xxii, 253 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 10 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Originally published in 1979, this book shows the beautiful simplifications that can be brought to the theory of differential equations by treating such equations from the product integral viewpoint. The first chapter of the book, dealing with linear ordinary differential equations, should be accessible to anyone with a knowledge of matrix theory and elementary calculus. Later chapters assume more sophistication on the part of the reader. The essential unity of these subjects is illustrated by the fact that the idea of the product integral can be naturally and effectively used to deal with all of them | ||
650 | 4 | |a Differential equations | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Integral equations | |
650 | 0 | 7 | |a Integralgleichung |0 (DE-588)4027229-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Integration |0 (DE-588)4173438-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Partielle Integration |0 (DE-588)4173438-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Integralgleichung |0 (DE-588)4027229-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Friedman, Charles N. |e Sonstige |4 oth | |
700 | 1 | |a Browder, Felix E. |4 aui | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-17737-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-30230-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107340701 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350517 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107340701 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107340701 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883440418816 |
---|---|
any_adam_object | |
author | Dollard, John D. |
author2 | Browder, Felix E. |
author2_role | aui |
author2_variant | f e b fe feb |
author_facet | Dollard, John D. Browder, Felix E. |
author_role | aut |
author_sort | Dollard, John D. |
author_variant | j d d jd jdd |
building | Verbundindex |
bvnumber | BV043941547 |
classification_rvk | SK 500 SK 520 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107340701 (OCoLC)967697195 (DE-599)BVBBV043941547 |
dewey-full | 515.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3/5 |
dewey-search | 515.3/5 |
dewey-sort | 3515.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107340701 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03180nmm a2200601zcb4500</leader><controlfield tag="001">BV043941547</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107340701</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-34070-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107340701</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107340701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941547</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3/5</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dollard, John D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Product integration with applications to differential equations</subfield><subfield code="c">John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 253 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Originally published in 1979, this book shows the beautiful simplifications that can be brought to the theory of differential equations by treating such equations from the product integral viewpoint. The first chapter of the book, dealing with linear ordinary differential equations, should be accessible to anyone with a knowledge of matrix theory and elementary calculus. Later chapters assume more sophistication on the part of the reader. The essential unity of these subjects is illustrated by the fact that the idea of the product integral can be naturally and effectively used to deal with all of them</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Integration</subfield><subfield code="0">(DE-588)4173438-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Integration</subfield><subfield code="0">(DE-588)4173438-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Charles N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Browder, Felix E.</subfield><subfield code="4">aui</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-17737-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-30230-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107340701</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350517</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107340701</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107340701</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941547 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9781107340701 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350517 |
oclc_num | 967697195 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxii, 253 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Dollard, John D. Verfasser aut Product integration with applications to differential equations John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani Cambridge Cambridge University Press 1984 1 online resource (xxii, 253 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 10 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Originally published in 1979, this book shows the beautiful simplifications that can be brought to the theory of differential equations by treating such equations from the product integral viewpoint. The first chapter of the book, dealing with linear ordinary differential equations, should be accessible to anyone with a knowledge of matrix theory and elementary calculus. Later chapters assume more sophistication on the part of the reader. The essential unity of these subjects is illustrated by the fact that the idea of the product integral can be naturally and effectively used to deal with all of them Differential equations Differential equations, Partial Integral equations Integralgleichung (DE-588)4027229-1 gnd rswk-swf Partielle Integration (DE-588)4173438-5 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Partielle Integration (DE-588)4173438-5 s 1\p DE-604 Integralgleichung (DE-588)4027229-1 s 2\p DE-604 Friedman, Charles N. Sonstige oth Browder, Felix E. aui Erscheint auch als Druckausgabe 978-0-521-17737-5 Erscheint auch als Druckausgabe 978-0-521-30230-2 https://doi.org/10.1017/CBO9781107340701 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dollard, John D. Product integration with applications to differential equations Differential equations Differential equations, Partial Integral equations Integralgleichung (DE-588)4027229-1 gnd Partielle Integration (DE-588)4173438-5 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4027229-1 (DE-588)4173438-5 (DE-588)4012249-9 |
title | Product integration with applications to differential equations |
title_auth | Product integration with applications to differential equations |
title_exact_search | Product integration with applications to differential equations |
title_full | Product integration with applications to differential equations John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani |
title_fullStr | Product integration with applications to differential equations John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani |
title_full_unstemmed | Product integration with applications to differential equations John D. Dollard and Charles N. Friedman ; foreword by Felix E. Browder ; appendix by P.R. Masani |
title_short | Product integration with applications to differential equations |
title_sort | product integration with applications to differential equations |
topic | Differential equations Differential equations, Partial Integral equations Integralgleichung (DE-588)4027229-1 gnd Partielle Integration (DE-588)4173438-5 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | Differential equations Differential equations, Partial Integral equations Integralgleichung Partielle Integration Differentialgleichung |
url | https://doi.org/10.1017/CBO9781107340701 |
work_keys_str_mv | AT dollardjohnd productintegrationwithapplicationstodifferentialequations AT friedmancharlesn productintegrationwithapplicationstodifferentialequations AT browderfelixe productintegrationwithapplicationstodifferentialequations |