Triangulated categories:
Over the last few decades triangulated categories have become increasingly important, to the extent that they can now be viewed as a unifying theory underlying major parts of modern mathematics. This 2010 collection of survey articles, written by leading experts, covers fundamental aspects of triang...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | London Mathematical Society lecture note series
375 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Over the last few decades triangulated categories have become increasingly important, to the extent that they can now be viewed as a unifying theory underlying major parts of modern mathematics. This 2010 collection of survey articles, written by leading experts, covers fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. These self-contained articles are a useful introduction for graduate students entering the field and a valuable reference for experts |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (vii, 463 pages) |
ISBN: | 9781139107075 |
DOI: | 10.1017/CBO9781139107075 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941504 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9781139107075 |c Online |9 978-1-139-10707-5 | ||
024 | 7 | |a 10.1017/CBO9781139107075 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139107075 | ||
035 | |a (OCoLC)852501413 | ||
035 | |a (DE-599)BVBBV043941504 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.62 |2 22 | |
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
245 | 1 | 0 | |a Triangulated categories |c edited by Thorsten Holm, Peter Jørgensen, Raphaël Rouquier |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (vii, 463 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 375 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Triangulated categories : definitions, properties, and examples |r Thorsten Holm and Peter Jørgensen |t Cohomology over complete intersections via exterior algebras |r Luchezar L. Avramov and Srikanth B. Iyengar |t Cluster algebras, quiver representations and triangulated categories |r Bernhard Keller |t Localization theory for triangulated categories |r Henning Krause |t Homological algebra in bivariant K-theory and other triangulated categories. I |r Ralf Meyer and Ryszard Nest |t Derived categories and Grothendieck duality |r Amnon Neeman |t Derived categories and algebraic geometry |r Raphaël Rouquier |t Triangulated categories for the analysts |r Pierre Schapira |t Algebraic versus topological triangulated categories |r Stefan Schwede |t Derived categories of coherent sheaves on algebraic varieties |r Yukinobu Toda |t Rigid dualizing complexes via differential graded algebras (survey) |r Amnon Yekutieli |
520 | |a Over the last few decades triangulated categories have become increasingly important, to the extent that they can now be viewed as a unifying theory underlying major parts of modern mathematics. This 2010 collection of survey articles, written by leading experts, covers fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. These self-contained articles are a useful introduction for graduate students entering the field and a valuable reference for experts | ||
650 | 4 | |a Triangulated categories | |
650 | 0 | 7 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Triangulation |0 (DE-588)4186017-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |D s |
689 | 0 | 1 | |a Triangulation |0 (DE-588)4186017-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Holm, Thorsten |d 1965- |4 edt | |
700 | 1 | |a Jørgensen, Peter |d 1970- |4 edt | |
700 | 1 | |a Rouquier, Raphaël |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-74431-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139107075 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350474 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139107075 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139107075 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883353387008 |
---|---|
any_adam_object | |
author2 | Holm, Thorsten 1965- Jørgensen, Peter 1970- Rouquier, Raphaël |
author2_role | edt edt edt |
author2_variant | t h th p j pj r r rr |
author_additional | Thorsten Holm and Peter Jørgensen Luchezar L. Avramov and Srikanth B. Iyengar Bernhard Keller Henning Krause Ralf Meyer and Ryszard Nest Amnon Neeman Raphaël Rouquier Pierre Schapira Stefan Schwede Yukinobu Toda Amnon Yekutieli |
author_facet | Holm, Thorsten 1965- Jørgensen, Peter 1970- Rouquier, Raphaël |
building | Verbundindex |
bvnumber | BV043941504 |
classification_rvk | SK 320 |
collection | ZDB-20-CBO |
contents | Triangulated categories : definitions, properties, and examples Cohomology over complete intersections via exterior algebras Cluster algebras, quiver representations and triangulated categories Localization theory for triangulated categories Homological algebra in bivariant K-theory and other triangulated categories. I Derived categories and Grothendieck duality Derived categories and algebraic geometry Triangulated categories for the analysts Algebraic versus topological triangulated categories Derived categories of coherent sheaves on algebraic varieties Rigid dualizing complexes via differential graded algebras (survey) |
ctrlnum | (ZDB-20-CBO)CR9781139107075 (OCoLC)852501413 (DE-599)BVBBV043941504 |
dewey-full | 512/.62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.62 |
dewey-search | 512/.62 |
dewey-sort | 3512 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139107075 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03510nmm a2200517zcb4500</leader><controlfield tag="001">BV043941504</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107075</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-10707-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139107075</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139107075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852501413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941504</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.62</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triangulated categories</subfield><subfield code="c">edited by Thorsten Holm, Peter Jørgensen, Raphaël Rouquier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 463 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">375</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Triangulated categories : definitions, properties, and examples</subfield><subfield code="r">Thorsten Holm and Peter Jørgensen</subfield><subfield code="t">Cohomology over complete intersections via exterior algebras</subfield><subfield code="r">Luchezar L. Avramov and Srikanth B. Iyengar</subfield><subfield code="t">Cluster algebras, quiver representations and triangulated categories</subfield><subfield code="r">Bernhard Keller</subfield><subfield code="t">Localization theory for triangulated categories</subfield><subfield code="r">Henning Krause</subfield><subfield code="t">Homological algebra in bivariant K-theory and other triangulated categories. I</subfield><subfield code="r">Ralf Meyer and Ryszard Nest</subfield><subfield code="t">Derived categories and Grothendieck duality</subfield><subfield code="r">Amnon Neeman</subfield><subfield code="t">Derived categories and algebraic geometry</subfield><subfield code="r">Raphaël Rouquier</subfield><subfield code="t">Triangulated categories for the analysts</subfield><subfield code="r">Pierre Schapira</subfield><subfield code="t">Algebraic versus topological triangulated categories</subfield><subfield code="r">Stefan Schwede</subfield><subfield code="t">Derived categories of coherent sheaves on algebraic varieties</subfield><subfield code="r">Yukinobu Toda</subfield><subfield code="t">Rigid dualizing complexes via differential graded algebras (survey)</subfield><subfield code="r">Amnon Yekutieli</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the last few decades triangulated categories have become increasingly important, to the extent that they can now be viewed as a unifying theory underlying major parts of modern mathematics. This 2010 collection of survey articles, written by leading experts, covers fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. These self-contained articles are a useful introduction for graduate students entering the field and a valuable reference for experts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangulated categories</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Triangulation</subfield><subfield code="0">(DE-588)4186017-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Triangulation</subfield><subfield code="0">(DE-588)4186017-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holm, Thorsten</subfield><subfield code="d">1965-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jørgensen, Peter</subfield><subfield code="d">1970-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rouquier, Raphaël</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-74431-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139107075</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350474</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139107075</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139107075</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941504 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9781139107075 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350474 |
oclc_num | 852501413 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vii, 463 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Triangulated categories edited by Thorsten Holm, Peter Jørgensen, Raphaël Rouquier Cambridge Cambridge University Press 2010 1 online resource (vii, 463 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 375 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Triangulated categories : definitions, properties, and examples Thorsten Holm and Peter Jørgensen Cohomology over complete intersections via exterior algebras Luchezar L. Avramov and Srikanth B. Iyengar Cluster algebras, quiver representations and triangulated categories Bernhard Keller Localization theory for triangulated categories Henning Krause Homological algebra in bivariant K-theory and other triangulated categories. I Ralf Meyer and Ryszard Nest Derived categories and Grothendieck duality Amnon Neeman Derived categories and algebraic geometry Raphaël Rouquier Triangulated categories for the analysts Pierre Schapira Algebraic versus topological triangulated categories Stefan Schwede Derived categories of coherent sheaves on algebraic varieties Yukinobu Toda Rigid dualizing complexes via differential graded algebras (survey) Amnon Yekutieli Over the last few decades triangulated categories have become increasingly important, to the extent that they can now be viewed as a unifying theory underlying major parts of modern mathematics. This 2010 collection of survey articles, written by leading experts, covers fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. These self-contained articles are a useful introduction for graduate students entering the field and a valuable reference for experts Triangulated categories Kategorie Mathematik (DE-588)4129930-9 gnd rswk-swf Triangulation (DE-588)4186017-2 gnd rswk-swf Kategorie Mathematik (DE-588)4129930-9 s Triangulation (DE-588)4186017-2 s 1\p DE-604 Holm, Thorsten 1965- edt Jørgensen, Peter 1970- edt Rouquier, Raphaël edt Erscheint auch als Druckausgabe 978-0-521-74431-7 https://doi.org/10.1017/CBO9781139107075 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Triangulated categories Triangulated categories : definitions, properties, and examples Cohomology over complete intersections via exterior algebras Cluster algebras, quiver representations and triangulated categories Localization theory for triangulated categories Homological algebra in bivariant K-theory and other triangulated categories. I Derived categories and Grothendieck duality Derived categories and algebraic geometry Triangulated categories for the analysts Algebraic versus topological triangulated categories Derived categories of coherent sheaves on algebraic varieties Rigid dualizing complexes via differential graded algebras (survey) Triangulated categories Kategorie Mathematik (DE-588)4129930-9 gnd Triangulation (DE-588)4186017-2 gnd |
subject_GND | (DE-588)4129930-9 (DE-588)4186017-2 |
title | Triangulated categories |
title_alt | Triangulated categories : definitions, properties, and examples Cohomology over complete intersections via exterior algebras Cluster algebras, quiver representations and triangulated categories Localization theory for triangulated categories Homological algebra in bivariant K-theory and other triangulated categories. I Derived categories and Grothendieck duality Derived categories and algebraic geometry Triangulated categories for the analysts Algebraic versus topological triangulated categories Derived categories of coherent sheaves on algebraic varieties Rigid dualizing complexes via differential graded algebras (survey) |
title_auth | Triangulated categories |
title_exact_search | Triangulated categories |
title_full | Triangulated categories edited by Thorsten Holm, Peter Jørgensen, Raphaël Rouquier |
title_fullStr | Triangulated categories edited by Thorsten Holm, Peter Jørgensen, Raphaël Rouquier |
title_full_unstemmed | Triangulated categories edited by Thorsten Holm, Peter Jørgensen, Raphaël Rouquier |
title_short | Triangulated categories |
title_sort | triangulated categories |
topic | Triangulated categories Kategorie Mathematik (DE-588)4129930-9 gnd Triangulation (DE-588)4186017-2 gnd |
topic_facet | Triangulated categories Kategorie Mathematik Triangulation |
url | https://doi.org/10.1017/CBO9781139107075 |
work_keys_str_mv | AT holmthorsten triangulatedcategories AT jørgensenpeter triangulatedcategories AT rouquierraphael triangulatedcategories |