Two-dimensional homotopy and combinatorial group theory:
Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimension...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1993
|
Schriftenreihe: | London Mathematical Society lecture note series
197 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 412 pages) |
ISBN: | 9780511629358 |
DOI: | 10.1017/CBO9780511629358 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941465 | ||
003 | DE-604 | ||
005 | 20220311 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1993 |||| o||u| ||||||eng d | ||
020 | |a 9780511629358 |c Online |9 978-0-511-62935-8 | ||
024 | 7 | |a 10.1017/CBO9780511629358 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511629358 | ||
035 | |a (OCoLC)849890386 | ||
035 | |a (DE-599)BVBBV043941465 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.24 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
245 | 1 | 0 | |a Two-dimensional homotopy and combinatorial group theory |c edited by Cynthia Hog-Angeloni, Wolfgang Metzler and Allan J. Sieradski |
246 | 1 | 3 | |a Two-Dimensional Homotopy & Combinatorial Group Theory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1993 | |
300 | |a 1 online resource (xi, 412 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series |v 197 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers | ||
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Combinatorial group theory | |
650 | 4 | |a Low-dimensional topology | |
650 | 0 | 7 | |a Kombinatorische Gruppentheorie |0 (DE-588)4219556-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopiemannigfaltigkeit |0 (DE-588)4160627-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Gruppentheorie |0 (DE-588)4219556-1 |D s |
689 | 0 | 1 | |a Homotopiemannigfaltigkeit |0 (DE-588)4160627-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hog-Angeloni, Cynthia |0 (DE-588)1157292216 |4 edt | |
700 | 1 | |a Metzler, W. |4 edt | |
700 | 1 | |a Sieradski, Allan J. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-44700-3 |
830 | 0 | |a London Mathematical Society lecture note series |v 197 |w (DE-604)BV044784209 |9 197 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511629358 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350435 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511629358 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511629358 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883239092224 |
---|---|
any_adam_object | |
author2 | Hog-Angeloni, Cynthia Metzler, W. Sieradski, Allan J. |
author2_role | edt edt edt |
author2_variant | c h a cha w m wm a j s aj ajs |
author_GND | (DE-588)1157292216 |
author_facet | Hog-Angeloni, Cynthia Metzler, W. Sieradski, Allan J. |
building | Verbundindex |
bvnumber | BV043941465 |
classification_rvk | SI 320 SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511629358 (OCoLC)849890386 (DE-599)BVBBV043941465 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511629358 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03587nmm a2200565zcb4500</leader><controlfield tag="001">BV043941465</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220311 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511629358</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62935-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511629358</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511629358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849890386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941465</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-dimensional homotopy and combinatorial group theory</subfield><subfield code="c">edited by Cynthia Hog-Angeloni, Wolfgang Metzler and Allan J. Sieradski</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Two-Dimensional Homotopy & Combinatorial Group Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 412 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">197</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-dimensional topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Gruppentheorie</subfield><subfield code="0">(DE-588)4219556-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopiemannigfaltigkeit</subfield><subfield code="0">(DE-588)4160627-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Gruppentheorie</subfield><subfield code="0">(DE-588)4219556-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homotopiemannigfaltigkeit</subfield><subfield code="0">(DE-588)4160627-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hog-Angeloni, Cynthia</subfield><subfield code="0">(DE-588)1157292216</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Metzler, W.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sieradski, Allan J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-44700-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">197</subfield><subfield code="w">(DE-604)BV044784209</subfield><subfield code="9">197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511629358</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350435</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629358</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629358</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941465 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9780511629358 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350435 |
oclc_num | 849890386 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 412 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press |
record_format | marc |
series | London Mathematical Society lecture note series |
series2 | London Mathematical Society lecture note series |
spelling | Two-dimensional homotopy and combinatorial group theory edited by Cynthia Hog-Angeloni, Wolfgang Metzler and Allan J. Sieradski Two-Dimensional Homotopy & Combinatorial Group Theory Cambridge Cambridge University Press 1993 1 online resource (xi, 412 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 197 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers Homotopy theory Combinatorial group theory Low-dimensional topology Kombinatorische Gruppentheorie (DE-588)4219556-1 gnd rswk-swf Homotopiemannigfaltigkeit (DE-588)4160627-9 gnd rswk-swf Kombinatorische Gruppentheorie (DE-588)4219556-1 s Homotopiemannigfaltigkeit (DE-588)4160627-9 s 1\p DE-604 Hog-Angeloni, Cynthia (DE-588)1157292216 edt Metzler, W. edt Sieradski, Allan J. edt Erscheint auch als Druckausgabe 978-0-521-44700-3 London Mathematical Society lecture note series 197 (DE-604)BV044784209 197 https://doi.org/10.1017/CBO9780511629358 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Two-dimensional homotopy and combinatorial group theory London Mathematical Society lecture note series Homotopy theory Combinatorial group theory Low-dimensional topology Kombinatorische Gruppentheorie (DE-588)4219556-1 gnd Homotopiemannigfaltigkeit (DE-588)4160627-9 gnd |
subject_GND | (DE-588)4219556-1 (DE-588)4160627-9 |
title | Two-dimensional homotopy and combinatorial group theory |
title_alt | Two-Dimensional Homotopy & Combinatorial Group Theory |
title_auth | Two-dimensional homotopy and combinatorial group theory |
title_exact_search | Two-dimensional homotopy and combinatorial group theory |
title_full | Two-dimensional homotopy and combinatorial group theory edited by Cynthia Hog-Angeloni, Wolfgang Metzler and Allan J. Sieradski |
title_fullStr | Two-dimensional homotopy and combinatorial group theory edited by Cynthia Hog-Angeloni, Wolfgang Metzler and Allan J. Sieradski |
title_full_unstemmed | Two-dimensional homotopy and combinatorial group theory edited by Cynthia Hog-Angeloni, Wolfgang Metzler and Allan J. Sieradski |
title_short | Two-dimensional homotopy and combinatorial group theory |
title_sort | two dimensional homotopy and combinatorial group theory |
topic | Homotopy theory Combinatorial group theory Low-dimensional topology Kombinatorische Gruppentheorie (DE-588)4219556-1 gnd Homotopiemannigfaltigkeit (DE-588)4160627-9 gnd |
topic_facet | Homotopy theory Combinatorial group theory Low-dimensional topology Kombinatorische Gruppentheorie Homotopiemannigfaltigkeit |
url | https://doi.org/10.1017/CBO9780511629358 |
volume_link | (DE-604)BV044784209 |
work_keys_str_mv | AT hogangelonicynthia twodimensionalhomotopyandcombinatorialgrouptheory AT metzlerw twodimensionalhomotopyandcombinatorialgrouptheory AT sieradskiallanj twodimensionalhomotopyandcombinatorialgrouptheory AT hogangelonicynthia twodimensionalhomotopycombinatorialgrouptheory AT metzlerw twodimensionalhomotopycombinatorialgrouptheory AT sieradskiallanj twodimensionalhomotopycombinatorialgrouptheory |