Geometry and integrability:
Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the poin...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | London Mathematical Society lecture note series
295 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 153 pages) |
ISBN: | 9780511543135 |
DOI: | 10.1017/CBO9780511543135 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941394 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511543135 |c Online |9 978-0-511-54313-5 | ||
024 | 7 | |a 10.1017/CBO9780511543135 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511543135 | ||
035 | |a (OCoLC)850372548 | ||
035 | |a (DE-599)BVBBV043941394 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/62 |2 21 | |
245 | 1 | 0 | |a Geometry and integrability |c edited by Lionel Mason and Yavuz Nutku |
246 | 1 | 3 | |a Geometry & Integrability |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 online resource (xi, 153 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 295 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Introduction / Lionel Mason -- Differential equations featuring many periodic solutions / F. Calogero -- Geometry and integrability / R.Y. Donagi -- The anti self-dual Yang-Mills equations and their reductions / Lionel Mason -- Curvature and integrability for Bianchi-type IX metrics / K.P. Tod -- Twistor theory for integrable equations / N.M.J. Woodhouse -- Nonlinear equations and the d-bar problem / P. Santini | |
520 | |a Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics | ||
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Twistor theory | |
650 | 4 | |a Fiber spaces (Mathematics) | |
650 | 0 | 7 | |a Twistor |0 (DE-588)4186504-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faserbündel |0 (DE-588)4135582-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |D s |
689 | 0 | 1 | |a Twistor |0 (DE-588)4186504-2 |D s |
689 | 0 | 2 | |a Faserbündel |0 (DE-588)4135582-9 |D s |
689 | 0 | 3 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mason, L. J. |4 edt | |
700 | 1 | |a Nutku, Yavuz |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-52999-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511543135 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350364 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511543135 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543135 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176883031474176 |
---|---|
any_adam_object | |
author2 | Mason, L. J. Nutku, Yavuz |
author2_role | edt edt |
author2_variant | l j m lj ljm y n yn |
author_facet | Mason, L. J. Nutku, Yavuz |
building | Verbundindex |
bvnumber | BV043941394 |
collection | ZDB-20-CBO |
contents | Introduction / Lionel Mason -- Differential equations featuring many periodic solutions / F. Calogero -- Geometry and integrability / R.Y. Donagi -- The anti self-dual Yang-Mills equations and their reductions / Lionel Mason -- Curvature and integrability for Bianchi-type IX metrics / K.P. Tod -- Twistor theory for integrable equations / N.M.J. Woodhouse -- Nonlinear equations and the d-bar problem / P. Santini |
ctrlnum | (ZDB-20-CBO)CR9780511543135 (OCoLC)850372548 (DE-599)BVBBV043941394 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511543135 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03633nmm a2200577zcb4500</leader><controlfield tag="001">BV043941394</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543135</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54313-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511543135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511543135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850372548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941394</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">21</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry and integrability</subfield><subfield code="c">edited by Lionel Mason and Yavuz Nutku</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Geometry & Integrability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 153 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">295</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction / Lionel Mason -- Differential equations featuring many periodic solutions / F. Calogero -- Geometry and integrability / R.Y. Donagi -- The anti self-dual Yang-Mills equations and their reductions / Lionel Mason -- Curvature and integrability for Bianchi-type IX metrics / K.P. Tod -- Twistor theory for integrable equations / N.M.J. Woodhouse -- Nonlinear equations and the d-bar problem / P. Santini</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twistor theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber spaces (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faserbündel</subfield><subfield code="0">(DE-588)4135582-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Faserbündel</subfield><subfield code="0">(DE-588)4135582-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mason, L. J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nutku, Yavuz</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-52999-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511543135</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350364</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543135</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543135</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941394 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9780511543135 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350364 |
oclc_num | 850372548 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 153 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Geometry and integrability edited by Lionel Mason and Yavuz Nutku Geometry & Integrability Cambridge Cambridge University Press 2003 1 online resource (xi, 153 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 295 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Introduction / Lionel Mason -- Differential equations featuring many periodic solutions / F. Calogero -- Geometry and integrability / R.Y. Donagi -- The anti self-dual Yang-Mills equations and their reductions / Lionel Mason -- Curvature and integrability for Bianchi-type IX metrics / K.P. Tod -- Twistor theory for integrable equations / N.M.J. Woodhouse -- Nonlinear equations and the d-bar problem / P. Santini Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics Global differential geometry Twistor theory Fiber spaces (Mathematics) Twistor (DE-588)4186504-2 gnd rswk-swf Faserbündel (DE-588)4135582-9 gnd rswk-swf Globale Differentialgeometrie (DE-588)4021286-5 gnd rswk-swf Integrables System (DE-588)4114032-1 gnd rswk-swf Globale Differentialgeometrie (DE-588)4021286-5 s Twistor (DE-588)4186504-2 s Faserbündel (DE-588)4135582-9 s Integrables System (DE-588)4114032-1 s 1\p DE-604 Mason, L. J. edt Nutku, Yavuz edt Erscheint auch als Druckausgabe 978-0-521-52999-0 https://doi.org/10.1017/CBO9780511543135 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Geometry and integrability Introduction / Lionel Mason -- Differential equations featuring many periodic solutions / F. Calogero -- Geometry and integrability / R.Y. Donagi -- The anti self-dual Yang-Mills equations and their reductions / Lionel Mason -- Curvature and integrability for Bianchi-type IX metrics / K.P. Tod -- Twistor theory for integrable equations / N.M.J. Woodhouse -- Nonlinear equations and the d-bar problem / P. Santini Global differential geometry Twistor theory Fiber spaces (Mathematics) Twistor (DE-588)4186504-2 gnd Faserbündel (DE-588)4135582-9 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd Integrables System (DE-588)4114032-1 gnd |
subject_GND | (DE-588)4186504-2 (DE-588)4135582-9 (DE-588)4021286-5 (DE-588)4114032-1 |
title | Geometry and integrability |
title_alt | Geometry & Integrability |
title_auth | Geometry and integrability |
title_exact_search | Geometry and integrability |
title_full | Geometry and integrability edited by Lionel Mason and Yavuz Nutku |
title_fullStr | Geometry and integrability edited by Lionel Mason and Yavuz Nutku |
title_full_unstemmed | Geometry and integrability edited by Lionel Mason and Yavuz Nutku |
title_short | Geometry and integrability |
title_sort | geometry and integrability |
topic | Global differential geometry Twistor theory Fiber spaces (Mathematics) Twistor (DE-588)4186504-2 gnd Faserbündel (DE-588)4135582-9 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd Integrables System (DE-588)4114032-1 gnd |
topic_facet | Global differential geometry Twistor theory Fiber spaces (Mathematics) Twistor Faserbündel Globale Differentialgeometrie Integrables System |
url | https://doi.org/10.1017/CBO9780511543135 |
work_keys_str_mv | AT masonlj geometryandintegrability AT nutkuyavuz geometryandintegrability AT masonlj geometryintegrability AT nutkuyavuz geometryintegrability |