Representations of reductive groups:
The representation theory of reductive algebraic groups and related finite reductive groups is a subject of great topical interest and has many applications. The articles in this volume provide introductions to various aspects of the subject, including algebraic groups and Lie algebras, reflection g...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | Publications of the Newton Institute
16 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The representation theory of reductive algebraic groups and related finite reductive groups is a subject of great topical interest and has many applications. The articles in this volume provide introductions to various aspects of the subject, including algebraic groups and Lie algebras, reflection groups, abelian and derived categories, the Deligne-Lusztig representation theory of finite reductive groups, Harish-Chandra theory and its generalisations, quantum groups, subgroup structure of algebraic groups, intersection cohomology, and Lusztig's conjectured character formula for irreducible representations in prime characteristic. The articles are carefully designed to reinforce one another, and are written by a team of distinguished authors: M. Broué, R. W. Carter, S. Donkin, M. Geck, J. C. Jantzen, B. Keller, M. W. Liebeck, G. Malle, J. C. Rickard and R. Rouquier. This volume as a whole should provide a very accessible introduction to an important, though technical, subject |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 191 pages) |
ISBN: | 9780511600623 |
DOI: | 10.1017/CBO9780511600623 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941376 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780511600623 |c Online |9 978-0-511-60062-3 | ||
024 | 7 | |a 10.1017/CBO9780511600623 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511600623 | ||
035 | |a (OCoLC)850810737 | ||
035 | |a (DE-599)BVBBV043941376 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 21 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
245 | 1 | 0 | |a Representations of reductive groups |c edited by Roger W. Carter and Meinolf Geck |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 online resource (viii, 191 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Publications of the Newton Institute |v 16 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Introduction to algebraic groups and Lie algebras R.W. Carter -- Weyl groups, affine Weyl groups, and reflection groups R. Rouquier -- Introduction to abelian and derived categories B. Keller -- Finite groups of Lie type M. Geck -- Generalized Harish-Chandra theory M. Broue and G. Malle -- Introduction to quantum groups J.C. Jantzen -- Introduction to the subgroup structure of algebraic groups M.W. Liebeck -- Introduction to intersection cohomology J. Rickard -- Introduction to Lusztig's Conjecture S. Donkin | |
520 | |a The representation theory of reductive algebraic groups and related finite reductive groups is a subject of great topical interest and has many applications. The articles in this volume provide introductions to various aspects of the subject, including algebraic groups and Lie algebras, reflection groups, abelian and derived categories, the Deligne-Lusztig representation theory of finite reductive groups, Harish-Chandra theory and its generalisations, quantum groups, subgroup structure of algebraic groups, intersection cohomology, and Lusztig's conjectured character formula for irreducible representations in prime characteristic. The articles are carefully designed to reinforce one another, and are written by a team of distinguished authors: M. Broué, R. W. Carter, S. Donkin, M. Geck, J. C. Jantzen, B. Keller, M. W. Liebeck, G. Malle, J. C. Rickard and R. Rouquier. This volume as a whole should provide a very accessible introduction to an important, though technical, subject | ||
650 | 4 | |a Representations of groups | |
650 | 4 | |a Linear algebraic groups | |
650 | 4 | |a Lie algebras | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | 2 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Carter, Roger W. |4 edt | |
700 | 1 | |a Geck, Meinolf |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-64325-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511600623 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350346 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511600623 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600623 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882995822592 |
---|---|
any_adam_object | |
author2 | Carter, Roger W. Geck, Meinolf |
author2_role | edt edt |
author2_variant | r w c rw rwc m g mg |
author_facet | Carter, Roger W. Geck, Meinolf |
building | Verbundindex |
bvnumber | BV043941376 |
classification_rvk | SK 240 |
collection | ZDB-20-CBO |
contents | Introduction to algebraic groups and Lie algebras R.W. Carter -- Weyl groups, affine Weyl groups, and reflection groups R. Rouquier -- Introduction to abelian and derived categories B. Keller -- Finite groups of Lie type M. Geck -- Generalized Harish-Chandra theory M. Broue and G. Malle -- Introduction to quantum groups J.C. Jantzen -- Introduction to the subgroup structure of algebraic groups M.W. Liebeck -- Introduction to intersection cohomology J. Rickard -- Introduction to Lusztig's Conjecture S. Donkin |
ctrlnum | (ZDB-20-CBO)CR9780511600623 (OCoLC)850810737 (DE-599)BVBBV043941376 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511600623 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03843nmm a2200577zcb4500</leader><controlfield tag="001">BV043941376</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600623</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60062-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511600623</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511600623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850810737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941376</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of reductive groups</subfield><subfield code="c">edited by Roger W. Carter and Meinolf Geck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 191 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Publications of the Newton Institute</subfield><subfield code="v">16</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction to algebraic groups and Lie algebras R.W. Carter -- Weyl groups, affine Weyl groups, and reflection groups R. Rouquier -- Introduction to abelian and derived categories B. Keller -- Finite groups of Lie type M. Geck -- Generalized Harish-Chandra theory M. Broue and G. Malle -- Introduction to quantum groups J.C. Jantzen -- Introduction to the subgroup structure of algebraic groups M.W. Liebeck -- Introduction to intersection cohomology J. Rickard -- Introduction to Lusztig's Conjecture S. Donkin</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The representation theory of reductive algebraic groups and related finite reductive groups is a subject of great topical interest and has many applications. The articles in this volume provide introductions to various aspects of the subject, including algebraic groups and Lie algebras, reflection groups, abelian and derived categories, the Deligne-Lusztig representation theory of finite reductive groups, Harish-Chandra theory and its generalisations, quantum groups, subgroup structure of algebraic groups, intersection cohomology, and Lusztig's conjectured character formula for irreducible representations in prime characteristic. The articles are carefully designed to reinforce one another, and are written by a team of distinguished authors: M. Broué, R. W. Carter, S. Donkin, M. Geck, J. C. Jantzen, B. Keller, M. W. Liebeck, G. Malle, J. C. Rickard and R. Rouquier. This volume as a whole should provide a very accessible introduction to an important, though technical, subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carter, Roger W.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geck, Meinolf</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-64325-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511600623</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350346</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600623</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600623</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043941376 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9780511600623 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350346 |
oclc_num | 850810737 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 191 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Publications of the Newton Institute |
spelling | Representations of reductive groups edited by Roger W. Carter and Meinolf Geck Cambridge Cambridge University Press 1998 1 online resource (viii, 191 pages) txt rdacontent c rdamedia cr rdacarrier Publications of the Newton Institute 16 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Introduction to algebraic groups and Lie algebras R.W. Carter -- Weyl groups, affine Weyl groups, and reflection groups R. Rouquier -- Introduction to abelian and derived categories B. Keller -- Finite groups of Lie type M. Geck -- Generalized Harish-Chandra theory M. Broue and G. Malle -- Introduction to quantum groups J.C. Jantzen -- Introduction to the subgroup structure of algebraic groups M.W. Liebeck -- Introduction to intersection cohomology J. Rickard -- Introduction to Lusztig's Conjecture S. Donkin The representation theory of reductive algebraic groups and related finite reductive groups is a subject of great topical interest and has many applications. The articles in this volume provide introductions to various aspects of the subject, including algebraic groups and Lie algebras, reflection groups, abelian and derived categories, the Deligne-Lusztig representation theory of finite reductive groups, Harish-Chandra theory and its generalisations, quantum groups, subgroup structure of algebraic groups, intersection cohomology, and Lusztig's conjectured character formula for irreducible representations in prime characteristic. The articles are carefully designed to reinforce one another, and are written by a team of distinguished authors: M. Broué, R. W. Carter, S. Donkin, M. Geck, J. C. Jantzen, B. Keller, M. W. Liebeck, G. Malle, J. C. Rickard and R. Rouquier. This volume as a whole should provide a very accessible introduction to an important, though technical, subject Representations of groups Linear algebraic groups Lie algebras Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lineare algebraische Gruppe (DE-588)4295326-1 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Lineare algebraische Gruppe (DE-588)4295326-1 s Darstellungstheorie (DE-588)4148816-7 s Reduktive Gruppe (DE-588)4177313-5 s 2\p DE-604 Carter, Roger W. edt Geck, Meinolf edt Erscheint auch als Druckausgabe 978-0-521-64325-2 https://doi.org/10.1017/CBO9780511600623 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Representations of reductive groups Introduction to algebraic groups and Lie algebras R.W. Carter -- Weyl groups, affine Weyl groups, and reflection groups R. Rouquier -- Introduction to abelian and derived categories B. Keller -- Finite groups of Lie type M. Geck -- Generalized Harish-Chandra theory M. Broue and G. Malle -- Introduction to quantum groups J.C. Jantzen -- Introduction to the subgroup structure of algebraic groups M.W. Liebeck -- Introduction to intersection cohomology J. Rickard -- Introduction to Lusztig's Conjecture S. Donkin Representations of groups Linear algebraic groups Lie algebras Darstellungstheorie (DE-588)4148816-7 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4295326-1 (DE-588)4177313-5 (DE-588)4143413-4 |
title | Representations of reductive groups |
title_auth | Representations of reductive groups |
title_exact_search | Representations of reductive groups |
title_full | Representations of reductive groups edited by Roger W. Carter and Meinolf Geck |
title_fullStr | Representations of reductive groups edited by Roger W. Carter and Meinolf Geck |
title_full_unstemmed | Representations of reductive groups edited by Roger W. Carter and Meinolf Geck |
title_short | Representations of reductive groups |
title_sort | representations of reductive groups |
topic | Representations of groups Linear algebraic groups Lie algebras Darstellungstheorie (DE-588)4148816-7 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
topic_facet | Representations of groups Linear algebraic groups Lie algebras Darstellungstheorie Lineare algebraische Gruppe Reduktive Gruppe Aufsatzsammlung |
url | https://doi.org/10.1017/CBO9780511600623 |
work_keys_str_mv | AT carterrogerw representationsofreductivegroups AT geckmeinolf representationsofreductivegroups |