Poisson geometry, deformation quantisation and group representations:
Poisson geometry lies at the cusp of noncommutative algebra and differential geometry, with natural and important links to classical physics and quantum mechanics. This book presents an introduction to the subject from a small group of leading researchers, and the result is a volume accessible to gr...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schriftenreihe: | London Mathematical Society lecture note series
323 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Poisson geometry lies at the cusp of noncommutative algebra and differential geometry, with natural and important links to classical physics and quantum mechanics. This book presents an introduction to the subject from a small group of leading researchers, and the result is a volume accessible to graduate students or experts from other fields. The contributions are: Poisson Geometry and Morita Equivalence by Bursztyn and Weinstein; Formality and Star Products by Cattaneo; Lie Groupoids, Sheaves and Cohomology by Moerdijk and Mrcun; Geometric Methods in Representation Theory by Schmid; Deformation Theory: A Powerful Tool in Physics Modelling by Sternheimer |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 359 pages) |
ISBN: | 9780511734878 |
DOI: | 10.1017/CBO9780511734878 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941357 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780511734878 |c Online |9 978-0-511-73487-8 | ||
024 | 7 | |a 10.1017/CBO9780511734878 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511734878 | ||
035 | |a (OCoLC)846961708 | ||
035 | |a (DE-599)BVBBV043941357 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.36 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
245 | 1 | 0 | |a Poisson geometry, deformation quantisation and group representations |c edited by Simone Gutt, John Rawnsley, Daniel Sternheimer |
246 | 1 | 3 | |a Poisson Geometry, Deformation Quantisation & Group Representations |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 online resource (x, 359 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 323 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g pt. 1 |t Poisson geometry and Morita equivalence |g 1 |t Introduction |g 2 |t Poisson geometry and some generalizations |g 3 |t Algebraic Morita equivalence |g 4 |t Geometric Morita equivalence |g 5 |t Geometric representation equivalence |g pt. 2 |t Formality and star products |g 1 |t Introduction |g 2 |t The star product |g 3 |t Rephrasing the main problem : the formality |g 4 |t Digression : what happens in the dual |g 5 |t The Kontsevich formula |g 6 |t From local to global deformation quantization |g pt. 3 |t Lie groupoids, sheaves and cohomology |g 1 |t Introduction |g 2 |t Lie groupoids |g 3 |t Sheaves on Lie groupoids |g 4 |t Sheaf cohomology |g 5 |t Compactly supported cohomology |g pt. 4 |t Geometric methods in representation theory |
520 | |a Poisson geometry lies at the cusp of noncommutative algebra and differential geometry, with natural and important links to classical physics and quantum mechanics. This book presents an introduction to the subject from a small group of leading researchers, and the result is a volume accessible to graduate students or experts from other fields. The contributions are: Poisson Geometry and Morita Equivalence by Bursztyn and Weinstein; Formality and Star Products by Cattaneo; Lie Groupoids, Sheaves and Cohomology by Moerdijk and Mrcun; Geometric Methods in Representation Theory by Schmid; Deformation Theory: A Powerful Tool in Physics Modelling by Sternheimer | ||
650 | 4 | |a Poisson manifolds | |
650 | 4 | |a Poisson algebras | |
650 | 4 | |a Representations of groups | |
700 | 1 | |a Gutt, Simone |4 edt | |
700 | 1 | |a Rawnsley, John H. |d 1947- |4 edt | |
700 | 1 | |a Sternheimer, Daniel |4 edt | |
711 | 2 | |a London Mathematical Society |a issuing body |j Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-61505-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511734878 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350328 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511734878 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511734878 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882948636672 |
---|---|
any_adam_object | |
author2 | Gutt, Simone Rawnsley, John H. 1947- Sternheimer, Daniel |
author2_role | edt edt edt |
author2_variant | s g sg j h r jh jhr d s ds |
author_facet | Gutt, Simone Rawnsley, John H. 1947- Sternheimer, Daniel |
building | Verbundindex |
bvnumber | BV043941357 |
classification_rvk | SK 370 |
collection | ZDB-20-CBO |
contents | Poisson geometry and Morita equivalence Introduction Poisson geometry and some generalizations Algebraic Morita equivalence Geometric Morita equivalence Geometric representation equivalence Formality and star products The star product Rephrasing the main problem : the formality Digression : what happens in the dual The Kontsevich formula From local to global deformation quantization Lie groupoids, sheaves and cohomology Lie groupoids Sheaves on Lie groupoids Sheaf cohomology Compactly supported cohomology Geometric methods in representation theory |
ctrlnum | (ZDB-20-CBO)CR9780511734878 (OCoLC)846961708 (DE-599)BVBBV043941357 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511734878 |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03272nmm a2200493zcb4500</leader><controlfield tag="001">BV043941357</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511734878</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-73487-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511734878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511734878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)846961708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941357</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Poisson geometry, deformation quantisation and group representations</subfield><subfield code="c">edited by Simone Gutt, John Rawnsley, Daniel Sternheimer</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Poisson Geometry, Deformation Quantisation & Group Representations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 359 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">323</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">pt. 1</subfield><subfield code="t">Poisson geometry and Morita equivalence</subfield><subfield code="g">1</subfield><subfield code="t">Introduction</subfield><subfield code="g">2</subfield><subfield code="t">Poisson geometry and some generalizations</subfield><subfield code="g">3</subfield><subfield code="t">Algebraic Morita equivalence</subfield><subfield code="g">4</subfield><subfield code="t">Geometric Morita equivalence</subfield><subfield code="g">5</subfield><subfield code="t">Geometric representation equivalence</subfield><subfield code="g">pt. 2</subfield><subfield code="t">Formality and star products</subfield><subfield code="g">1</subfield><subfield code="t">Introduction</subfield><subfield code="g">2</subfield><subfield code="t">The star product</subfield><subfield code="g">3</subfield><subfield code="t">Rephrasing the main problem : the formality</subfield><subfield code="g">4</subfield><subfield code="t">Digression : what happens in the dual</subfield><subfield code="g">5</subfield><subfield code="t">The Kontsevich formula</subfield><subfield code="g">6</subfield><subfield code="t">From local to global deformation quantization</subfield><subfield code="g">pt. 3</subfield><subfield code="t">Lie groupoids, sheaves and cohomology</subfield><subfield code="g">1</subfield><subfield code="t">Introduction</subfield><subfield code="g">2</subfield><subfield code="t">Lie groupoids</subfield><subfield code="g">3</subfield><subfield code="t">Sheaves on Lie groupoids</subfield><subfield code="g">4</subfield><subfield code="t">Sheaf cohomology</subfield><subfield code="g">5</subfield><subfield code="t">Compactly supported cohomology</subfield><subfield code="g">pt. 4</subfield><subfield code="t">Geometric methods in representation theory</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Poisson geometry lies at the cusp of noncommutative algebra and differential geometry, with natural and important links to classical physics and quantum mechanics. This book presents an introduction to the subject from a small group of leading researchers, and the result is a volume accessible to graduate students or experts from other fields. The contributions are: Poisson Geometry and Morita Equivalence by Bursztyn and Weinstein; Formality and Star Products by Cattaneo; Lie Groupoids, Sheaves and Cohomology by Moerdijk and Mrcun; Geometric Methods in Representation Theory by Schmid; Deformation Theory: A Powerful Tool in Physics Modelling by Sternheimer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gutt, Simone</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rawnsley, John H.</subfield><subfield code="d">1947-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sternheimer, Daniel</subfield><subfield code="4">edt</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">London Mathematical Society</subfield><subfield code="a">issuing body</subfield><subfield code="j">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-61505-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511734878</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350328</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511734878</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511734878</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941357 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9780511734878 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350328 |
oclc_num | 846961708 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 359 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Poisson geometry, deformation quantisation and group representations edited by Simone Gutt, John Rawnsley, Daniel Sternheimer Poisson Geometry, Deformation Quantisation & Group Representations Cambridge Cambridge University Press 2005 1 online resource (x, 359 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 323 Title from publisher's bibliographic system (viewed on 05 Oct 2015) pt. 1 Poisson geometry and Morita equivalence 1 Introduction 2 Poisson geometry and some generalizations 3 Algebraic Morita equivalence 4 Geometric Morita equivalence 5 Geometric representation equivalence pt. 2 Formality and star products 1 Introduction 2 The star product 3 Rephrasing the main problem : the formality 4 Digression : what happens in the dual 5 The Kontsevich formula 6 From local to global deformation quantization pt. 3 Lie groupoids, sheaves and cohomology 1 Introduction 2 Lie groupoids 3 Sheaves on Lie groupoids 4 Sheaf cohomology 5 Compactly supported cohomology pt. 4 Geometric methods in representation theory Poisson geometry lies at the cusp of noncommutative algebra and differential geometry, with natural and important links to classical physics and quantum mechanics. This book presents an introduction to the subject from a small group of leading researchers, and the result is a volume accessible to graduate students or experts from other fields. The contributions are: Poisson Geometry and Morita Equivalence by Bursztyn and Weinstein; Formality and Star Products by Cattaneo; Lie Groupoids, Sheaves and Cohomology by Moerdijk and Mrcun; Geometric Methods in Representation Theory by Schmid; Deformation Theory: A Powerful Tool in Physics Modelling by Sternheimer Poisson manifolds Poisson algebras Representations of groups Gutt, Simone edt Rawnsley, John H. 1947- edt Sternheimer, Daniel edt London Mathematical Society issuing body Sonstige oth Erscheint auch als Druckausgabe 978-0-521-61505-1 https://doi.org/10.1017/CBO9780511734878 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Poisson geometry, deformation quantisation and group representations Poisson geometry and Morita equivalence Introduction Poisson geometry and some generalizations Algebraic Morita equivalence Geometric Morita equivalence Geometric representation equivalence Formality and star products The star product Rephrasing the main problem : the formality Digression : what happens in the dual The Kontsevich formula From local to global deformation quantization Lie groupoids, sheaves and cohomology Lie groupoids Sheaves on Lie groupoids Sheaf cohomology Compactly supported cohomology Geometric methods in representation theory Poisson manifolds Poisson algebras Representations of groups |
title | Poisson geometry, deformation quantisation and group representations |
title_alt | Poisson Geometry, Deformation Quantisation & Group Representations Poisson geometry and Morita equivalence Introduction Poisson geometry and some generalizations Algebraic Morita equivalence Geometric Morita equivalence Geometric representation equivalence Formality and star products The star product Rephrasing the main problem : the formality Digression : what happens in the dual The Kontsevich formula From local to global deformation quantization Lie groupoids, sheaves and cohomology Lie groupoids Sheaves on Lie groupoids Sheaf cohomology Compactly supported cohomology Geometric methods in representation theory |
title_auth | Poisson geometry, deformation quantisation and group representations |
title_exact_search | Poisson geometry, deformation quantisation and group representations |
title_full | Poisson geometry, deformation quantisation and group representations edited by Simone Gutt, John Rawnsley, Daniel Sternheimer |
title_fullStr | Poisson geometry, deformation quantisation and group representations edited by Simone Gutt, John Rawnsley, Daniel Sternheimer |
title_full_unstemmed | Poisson geometry, deformation quantisation and group representations edited by Simone Gutt, John Rawnsley, Daniel Sternheimer |
title_short | Poisson geometry, deformation quantisation and group representations |
title_sort | poisson geometry deformation quantisation and group representations |
topic | Poisson manifolds Poisson algebras Representations of groups |
topic_facet | Poisson manifolds Poisson algebras Representations of groups |
url | https://doi.org/10.1017/CBO9780511734878 |
work_keys_str_mv | AT guttsimone poissongeometrydeformationquantisationandgrouprepresentations AT rawnsleyjohnh poissongeometrydeformationquantisationandgrouprepresentations AT sternheimerdaniel poissongeometrydeformationquantisationandgrouprepresentations AT londonmathematicalsocietyissuingbody poissongeometrydeformationquantisationandgrouprepresentations AT guttsimone poissongeometrydeformationquantisationgrouprepresentations AT rawnsleyjohnh poissongeometrydeformationquantisationgrouprepresentations AT sternheimerdaniel poissongeometrydeformationquantisationgrouprepresentations AT londonmathematicalsocietyissuingbody poissongeometrydeformationquantisationgrouprepresentations |