Elliptic cohomology: geometry, applications, and higher chromatic analogues
Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened our understanding of it to what we know of the topography of an archipelago; the peaks are beautiful and clearly connected to each other, but the exac...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | London Mathematical Society lecture note series
342 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened our understanding of it to what we know of the topography of an archipelago; the peaks are beautiful and clearly connected to each other, but the exact connections are buried, as yet invisible. This very active subject has connections to algebraic topology, theoretical physics, number theory and algebraic geometry, and all these connections are represented in the sixteen papers in this volume. A variety of distinct perspectives are offered, with topics including equivariant complex elliptic cohomology, the physics of M-theory, the modular characteristics of vertex operator algebras, and higher chromatic analogues of elliptic cohomology. This is the first collection of papers on elliptic cohomology in almost twenty years and gives a broad picture of the state of the art in this important field of mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 364 pages) |
ISBN: | 9780511721489 |
DOI: | 10.1017/CBO9780511721489 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941276 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511721489 |c Online |9 978-0-511-72148-9 | ||
024 | 7 | |a 10.1017/CBO9780511721489 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721489 | ||
035 | |a (OCoLC)850420558 | ||
035 | |a (DE-599)BVBBV043941276 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514.23 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
245 | 1 | 0 | |a Elliptic cohomology |b geometry, applications, and higher chromatic analogues |c [edited by] Haynes R. Miller, Douglas C. Ravenel |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xiv, 364 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 342 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened our understanding of it to what we know of the topography of an archipelago; the peaks are beautiful and clearly connected to each other, but the exact connections are buried, as yet invisible. This very active subject has connections to algebraic topology, theoretical physics, number theory and algebraic geometry, and all these connections are represented in the sixteen papers in this volume. A variety of distinct perspectives are offered, with topics including equivariant complex elliptic cohomology, the physics of M-theory, the modular characteristics of vertex operator algebras, and higher chromatic analogues of elliptic cohomology. This is the first collection of papers on elliptic cohomology in almost twenty years and gives a broad picture of the state of the art in this important field of mathematics | ||
650 | 4 | |a Homology theory / Congresses | |
650 | 4 | |a Algebraic topology / Congresses | |
650 | 0 | 7 | |a Kohomologietheorie |0 (DE-588)4164610-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Kohomologietheorie |0 (DE-588)4164610-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Miller, Haynes R. |d 1948- |4 edt | |
700 | 1 | |a Ravenel, Douglas C. |4 edt | |
711 | 2 | |a London Mathematical Society |a issuing body |j Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-70040-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721489 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350247 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721489 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721489 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882749407232 |
---|---|
any_adam_object | |
author2 | Miller, Haynes R. 1948- Ravenel, Douglas C. |
author2_role | edt edt |
author2_variant | h r m hr hrm d c r dc dcr |
author_facet | Miller, Haynes R. 1948- Ravenel, Douglas C. |
building | Verbundindex |
bvnumber | BV043941276 |
classification_rvk | SI 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511721489 (OCoLC)850420558 (DE-599)BVBBV043941276 |
dewey-full | 514.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.23 |
dewey-search | 514.23 |
dewey-sort | 3514.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721489 |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03060nmm a2200505zcb4500</leader><controlfield tag="001">BV043941276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721489</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72148-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721489</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850420558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941276</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic cohomology</subfield><subfield code="b">geometry, applications, and higher chromatic analogues</subfield><subfield code="c">[edited by] Haynes R. Miller, Douglas C. Ravenel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 364 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">342</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened our understanding of it to what we know of the topography of an archipelago; the peaks are beautiful and clearly connected to each other, but the exact connections are buried, as yet invisible. This very active subject has connections to algebraic topology, theoretical physics, number theory and algebraic geometry, and all these connections are represented in the sixteen papers in this volume. A variety of distinct perspectives are offered, with topics including equivariant complex elliptic cohomology, the physics of M-theory, the modular characteristics of vertex operator algebras, and higher chromatic analogues of elliptic cohomology. This is the first collection of papers on elliptic cohomology in almost twenty years and gives a broad picture of the state of the art in this important field of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology / Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miller, Haynes R.</subfield><subfield code="d">1948-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ravenel, Douglas C.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">London Mathematical Society</subfield><subfield code="a">issuing body</subfield><subfield code="j">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-70040-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721489</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350247</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721489</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721489</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV043941276 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9780511721489 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350247 |
oclc_num | 850420558 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 364 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Elliptic cohomology geometry, applications, and higher chromatic analogues [edited by] Haynes R. Miller, Douglas C. Ravenel Cambridge Cambridge University Press 2007 1 online resource (xiv, 364 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 342 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened our understanding of it to what we know of the topography of an archipelago; the peaks are beautiful and clearly connected to each other, but the exact connections are buried, as yet invisible. This very active subject has connections to algebraic topology, theoretical physics, number theory and algebraic geometry, and all these connections are represented in the sixteen papers in this volume. A variety of distinct perspectives are offered, with topics including equivariant complex elliptic cohomology, the physics of M-theory, the modular characteristics of vertex operator algebras, and higher chromatic analogues of elliptic cohomology. This is the first collection of papers on elliptic cohomology in almost twenty years and gives a broad picture of the state of the art in this important field of mathematics Homology theory / Congresses Algebraic topology / Congresses Kohomologietheorie (DE-588)4164610-1 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Kohomologietheorie (DE-588)4164610-1 s 1\p DE-604 Miller, Haynes R. 1948- edt Ravenel, Douglas C. edt London Mathematical Society issuing body Sonstige oth Erscheint auch als Druckausgabe 978-0-521-70040-5 https://doi.org/10.1017/CBO9780511721489 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Elliptic cohomology geometry, applications, and higher chromatic analogues Homology theory / Congresses Algebraic topology / Congresses Kohomologietheorie (DE-588)4164610-1 gnd |
subject_GND | (DE-588)4164610-1 (DE-588)1071861417 |
title | Elliptic cohomology geometry, applications, and higher chromatic analogues |
title_auth | Elliptic cohomology geometry, applications, and higher chromatic analogues |
title_exact_search | Elliptic cohomology geometry, applications, and higher chromatic analogues |
title_full | Elliptic cohomology geometry, applications, and higher chromatic analogues [edited by] Haynes R. Miller, Douglas C. Ravenel |
title_fullStr | Elliptic cohomology geometry, applications, and higher chromatic analogues [edited by] Haynes R. Miller, Douglas C. Ravenel |
title_full_unstemmed | Elliptic cohomology geometry, applications, and higher chromatic analogues [edited by] Haynes R. Miller, Douglas C. Ravenel |
title_short | Elliptic cohomology |
title_sort | elliptic cohomology geometry applications and higher chromatic analogues |
title_sub | geometry, applications, and higher chromatic analogues |
topic | Homology theory / Congresses Algebraic topology / Congresses Kohomologietheorie (DE-588)4164610-1 gnd |
topic_facet | Homology theory / Congresses Algebraic topology / Congresses Kohomologietheorie Konferenzschrift |
url | https://doi.org/10.1017/CBO9780511721489 |
work_keys_str_mv | AT millerhaynesr ellipticcohomologygeometryapplicationsandhigherchromaticanalogues AT raveneldouglasc ellipticcohomologygeometryapplicationsandhigherchromaticanalogues AT londonmathematicalsocietyissuingbody ellipticcohomologygeometryapplicationsandhigherchromaticanalogues |