Analytic pro-p groups:
The first edition of this book was the indispensable reference for researchers in the theory of pro-p groups. In this second edition the presentation has been improved and important new material has been added. The first part of the book is group-theoretic. It develops the theory of pro-p groups of...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1999
|
Ausgabe: | Second edition |
Schriftenreihe: | Cambridge studies in advanced mathematics
61 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-355 DE-706 Volltext |
Zusammenfassung: | The first edition of this book was the indispensable reference for researchers in the theory of pro-p groups. In this second edition the presentation has been improved and important new material has been added. The first part of the book is group-theoretic. It develops the theory of pro-p groups of finite rank, starting from first principles and using elementary methods. Part II introduces p-adic analytic groups: by taking advantage of the theory developed in Part I, it is possible to define these, and derive all the main results of p-adic Lie theory, without having to develop any sophisticated analytic machinery. Part III, consisting of new material, takes the theory further. Among those topics discussed are the theory of pro-p groups of finite coclass, the dimension subgroup series, and its associated graded Lie algebra. The final chapter sketches a theory of analytic groups over pro-p rings other than the p-adic integers |
Beschreibung: | 1 online resource (xviii, 368 Seiten) |
ISBN: | 9780511470882 |
DOI: | 10.1017/CBO9780511470882 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941275 | ||
003 | DE-604 | ||
005 | 20240719 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1999 |||| o||u| ||||||eng d | ||
020 | |a 9780511470882 |c Online |9 978-0-511-47088-2 | ||
024 | 7 | |a 10.1017/CBO9780511470882 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511470882 | ||
035 | |a (OCoLC)967679126 | ||
035 | |a (DE-599)BVBBV043941275 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 |a DE-706 | ||
082 | 0 | |a 512/.2 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Dixon, John D. |d 1937- |e Verfasser |0 (DE-588)1031802444 |4 aut | |
245 | 1 | 0 | |a Analytic pro-p groups |c J.D. Dixon, Carleton University, Ottawa, M.P.F. du Sautoy, University of Cambridge, A. Mann, Hebrew University, Jerusalem, D. Segal, All Souls College Oxford; Revised and enlarged by Marcus du Sautoy & Dan Segal |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1999 | |
300 | |a 1 online resource (xviii, 368 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 61 | |
505 | 8 | |a Pt. I. Pro-p groups -- 1. Profinite groups and pro-p groups -- 2. Powerful p-groups -- 3. Pro-p groups of finite rank -- 4. Uniformly powerful groups -- 5. Automorphism groups -- Interlude A. 'Fascicule de resultats': pro-p groups of finite rank -- Pt. II. Analytic groups -- 6. Normed algebras -- 7. The group algebra -- Interlude B. Linearity criteria -- 8. p-adic analytic groups -- Interlude C. Finitely generated groups, p-adic analytic groups and Poincare series -- 9. Lie theory -- Pt. III. Further topics -- 10. Pro-p groups of finite coclass -- 11. Dimension subgroup methods -- 12. Some graded algebras -- Interlude D. The Golod-Shafarevich inequality -- Interlude E. Groups of sub-exponential growth -- 13. Analytic groups over pro-p rings -- App. A. The Hall-Petrescu formula -- App. B. Topological groups | |
520 | |a The first edition of this book was the indispensable reference for researchers in the theory of pro-p groups. In this second edition the presentation has been improved and important new material has been added. The first part of the book is group-theoretic. It develops the theory of pro-p groups of finite rank, starting from first principles and using elementary methods. Part II introduces p-adic analytic groups: by taking advantage of the theory developed in Part I, it is possible to define these, and derive all the main results of p-adic Lie theory, without having to develop any sophisticated analytic machinery. Part III, consisting of new material, takes the theory further. Among those topics discussed are the theory of pro-p groups of finite coclass, the dimension subgroup series, and its associated graded Lie algebra. The final chapter sketches a theory of analytic groups over pro-p rings other than the p-adic integers | ||
650 | 4 | |a Nilpotent groups | |
650 | 4 | |a p-adic groups | |
650 | 0 | 7 | |a Pro-p-Gruppe |0 (DE-588)4275211-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pro-p-Gruppe |0 (DE-588)4275211-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Du Sautoy, Marcus |d 1965- |e Verfasser |0 (DE-588)122205731 |4 aut | |
700 | 1 | |a Mann, Avinoam |d 1937- |e Verfasser |0 (DE-588)173586686 |4 aut | |
700 | 1 | |a Segal, Daniel |d 1947- |e Verfasser |0 (DE-588)133203670 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-65011-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-54218-0 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 61 |w (DE-604)BV044781283 |9 61 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511470882 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029350246 | |
966 | e | |u https://doi.org/10.1017/CBO9780511470882 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470882 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470882 |l DE-355 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470882 |l DE-706 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805088027408596992 |
---|---|
adam_text | |
any_adam_object | |
author | Dixon, John D. 1937- Du Sautoy, Marcus 1965- Mann, Avinoam 1937- Segal, Daniel 1947- |
author_GND | (DE-588)1031802444 (DE-588)122205731 (DE-588)173586686 (DE-588)133203670 |
author_facet | Dixon, John D. 1937- Du Sautoy, Marcus 1965- Mann, Avinoam 1937- Segal, Daniel 1947- |
author_role | aut aut aut aut |
author_sort | Dixon, John D. 1937- |
author_variant | j d d jd jdd s m d sm smd a m am d s ds |
building | Verbundindex |
bvnumber | BV043941275 |
classification_rvk | SI 320 SK 260 SK 340 |
collection | ZDB-20-CBO |
contents | Pt. I. Pro-p groups -- 1. Profinite groups and pro-p groups -- 2. Powerful p-groups -- 3. Pro-p groups of finite rank -- 4. Uniformly powerful groups -- 5. Automorphism groups -- Interlude A. 'Fascicule de resultats': pro-p groups of finite rank -- Pt. II. Analytic groups -- 6. Normed algebras -- 7. The group algebra -- Interlude B. Linearity criteria -- 8. p-adic analytic groups -- Interlude C. Finitely generated groups, p-adic analytic groups and Poincare series -- 9. Lie theory -- Pt. III. Further topics -- 10. Pro-p groups of finite coclass -- 11. Dimension subgroup methods -- 12. Some graded algebras -- Interlude D. The Golod-Shafarevich inequality -- Interlude E. Groups of sub-exponential growth -- 13. Analytic groups over pro-p rings -- App. A. The Hall-Petrescu formula -- App. B. Topological groups |
ctrlnum | (ZDB-20-CBO)CR9780511470882 (OCoLC)967679126 (DE-599)BVBBV043941275 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511470882 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV043941275</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240719</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511470882</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-47088-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511470882</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511470882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967679126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941275</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dixon, John D.</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1031802444</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic pro-p groups</subfield><subfield code="c">J.D. Dixon, Carleton University, Ottawa, M.P.F. du Sautoy, University of Cambridge, A. Mann, Hebrew University, Jerusalem, D. Segal, All Souls College Oxford; Revised and enlarged by Marcus du Sautoy & Dan Segal</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 368 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">61</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Pt. I. Pro-p groups -- 1. Profinite groups and pro-p groups -- 2. Powerful p-groups -- 3. Pro-p groups of finite rank -- 4. Uniformly powerful groups -- 5. Automorphism groups -- Interlude A. 'Fascicule de resultats': pro-p groups of finite rank -- Pt. II. Analytic groups -- 6. Normed algebras -- 7. The group algebra -- Interlude B. Linearity criteria -- 8. p-adic analytic groups -- Interlude C. Finitely generated groups, p-adic analytic groups and Poincare series -- 9. Lie theory -- Pt. III. Further topics -- 10. Pro-p groups of finite coclass -- 11. Dimension subgroup methods -- 12. Some graded algebras -- Interlude D. The Golod-Shafarevich inequality -- Interlude E. Groups of sub-exponential growth -- 13. Analytic groups over pro-p rings -- App. A. The Hall-Petrescu formula -- App. B. Topological groups</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The first edition of this book was the indispensable reference for researchers in the theory of pro-p groups. In this second edition the presentation has been improved and important new material has been added. The first part of the book is group-theoretic. It develops the theory of pro-p groups of finite rank, starting from first principles and using elementary methods. Part II introduces p-adic analytic groups: by taking advantage of the theory developed in Part I, it is possible to define these, and derive all the main results of p-adic Lie theory, without having to develop any sophisticated analytic machinery. Part III, consisting of new material, takes the theory further. Among those topics discussed are the theory of pro-p groups of finite coclass, the dimension subgroup series, and its associated graded Lie algebra. The final chapter sketches a theory of analytic groups over pro-p rings other than the p-adic integers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pro-p-Gruppe</subfield><subfield code="0">(DE-588)4275211-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pro-p-Gruppe</subfield><subfield code="0">(DE-588)4275211-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du Sautoy, Marcus</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122205731</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mann, Avinoam</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173586686</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Segal, Daniel</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133203670</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-65011-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-54218-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">61</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">61</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511470882</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350246</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470882</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470882</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470882</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470882</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941275 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T09:01:30Z |
institution | BVB |
isbn | 9780511470882 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350246 |
oclc_num | 967679126 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 DE-706 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 DE-706 |
physical | 1 online resource (xviii, 368 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) ZDB-20-CBO UBY_PDA_CBO_Kauf |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Dixon, John D. 1937- Verfasser (DE-588)1031802444 aut Analytic pro-p groups J.D. Dixon, Carleton University, Ottawa, M.P.F. du Sautoy, University of Cambridge, A. Mann, Hebrew University, Jerusalem, D. Segal, All Souls College Oxford; Revised and enlarged by Marcus du Sautoy & Dan Segal Second edition Cambridge Cambridge University Press 1999 1 online resource (xviii, 368 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 61 Pt. I. Pro-p groups -- 1. Profinite groups and pro-p groups -- 2. Powerful p-groups -- 3. Pro-p groups of finite rank -- 4. Uniformly powerful groups -- 5. Automorphism groups -- Interlude A. 'Fascicule de resultats': pro-p groups of finite rank -- Pt. II. Analytic groups -- 6. Normed algebras -- 7. The group algebra -- Interlude B. Linearity criteria -- 8. p-adic analytic groups -- Interlude C. Finitely generated groups, p-adic analytic groups and Poincare series -- 9. Lie theory -- Pt. III. Further topics -- 10. Pro-p groups of finite coclass -- 11. Dimension subgroup methods -- 12. Some graded algebras -- Interlude D. The Golod-Shafarevich inequality -- Interlude E. Groups of sub-exponential growth -- 13. Analytic groups over pro-p rings -- App. A. The Hall-Petrescu formula -- App. B. Topological groups The first edition of this book was the indispensable reference for researchers in the theory of pro-p groups. In this second edition the presentation has been improved and important new material has been added. The first part of the book is group-theoretic. It develops the theory of pro-p groups of finite rank, starting from first principles and using elementary methods. Part II introduces p-adic analytic groups: by taking advantage of the theory developed in Part I, it is possible to define these, and derive all the main results of p-adic Lie theory, without having to develop any sophisticated analytic machinery. Part III, consisting of new material, takes the theory further. Among those topics discussed are the theory of pro-p groups of finite coclass, the dimension subgroup series, and its associated graded Lie algebra. The final chapter sketches a theory of analytic groups over pro-p rings other than the p-adic integers Nilpotent groups p-adic groups Pro-p-Gruppe (DE-588)4275211-5 gnd rswk-swf Pro-p-Gruppe (DE-588)4275211-5 s DE-604 Du Sautoy, Marcus 1965- Verfasser (DE-588)122205731 aut Mann, Avinoam 1937- Verfasser (DE-588)173586686 aut Segal, Daniel 1947- Verfasser (DE-588)133203670 aut Erscheint auch als Druck-Ausgabe 978-0-521-65011-3 Erscheint auch als Druck-Ausgabe 978-0-521-54218-0 Cambridge studies in advanced mathematics 61 (DE-604)BV044781283 61 https://doi.org/10.1017/CBO9780511470882 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dixon, John D. 1937- Du Sautoy, Marcus 1965- Mann, Avinoam 1937- Segal, Daniel 1947- Analytic pro-p groups Cambridge studies in advanced mathematics Pt. I. Pro-p groups -- 1. Profinite groups and pro-p groups -- 2. Powerful p-groups -- 3. Pro-p groups of finite rank -- 4. Uniformly powerful groups -- 5. Automorphism groups -- Interlude A. 'Fascicule de resultats': pro-p groups of finite rank -- Pt. II. Analytic groups -- 6. Normed algebras -- 7. The group algebra -- Interlude B. Linearity criteria -- 8. p-adic analytic groups -- Interlude C. Finitely generated groups, p-adic analytic groups and Poincare series -- 9. Lie theory -- Pt. III. Further topics -- 10. Pro-p groups of finite coclass -- 11. Dimension subgroup methods -- 12. Some graded algebras -- Interlude D. The Golod-Shafarevich inequality -- Interlude E. Groups of sub-exponential growth -- 13. Analytic groups over pro-p rings -- App. A. The Hall-Petrescu formula -- App. B. Topological groups Nilpotent groups p-adic groups Pro-p-Gruppe (DE-588)4275211-5 gnd |
subject_GND | (DE-588)4275211-5 |
title | Analytic pro-p groups |
title_auth | Analytic pro-p groups |
title_exact_search | Analytic pro-p groups |
title_full | Analytic pro-p groups J.D. Dixon, Carleton University, Ottawa, M.P.F. du Sautoy, University of Cambridge, A. Mann, Hebrew University, Jerusalem, D. Segal, All Souls College Oxford; Revised and enlarged by Marcus du Sautoy & Dan Segal |
title_fullStr | Analytic pro-p groups J.D. Dixon, Carleton University, Ottawa, M.P.F. du Sautoy, University of Cambridge, A. Mann, Hebrew University, Jerusalem, D. Segal, All Souls College Oxford; Revised and enlarged by Marcus du Sautoy & Dan Segal |
title_full_unstemmed | Analytic pro-p groups J.D. Dixon, Carleton University, Ottawa, M.P.F. du Sautoy, University of Cambridge, A. Mann, Hebrew University, Jerusalem, D. Segal, All Souls College Oxford; Revised and enlarged by Marcus du Sautoy & Dan Segal |
title_short | Analytic pro-p groups |
title_sort | analytic pro p groups |
topic | Nilpotent groups p-adic groups Pro-p-Gruppe (DE-588)4275211-5 gnd |
topic_facet | Nilpotent groups p-adic groups Pro-p-Gruppe |
url | https://doi.org/10.1017/CBO9780511470882 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT dixonjohnd analyticpropgroups AT dusautoymarcus analyticpropgroups AT mannavinoam analyticpropgroups AT segaldaniel analyticpropgroups |