Non-abelian fundamental groups in Iwasawa theory:
Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explai...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schriftenreihe: | London Mathematical Society lecture note series
393 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin–Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 310 pages) |
ISBN: | 9780511984440 |
DOI: | 10.1017/CBO9780511984440 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941245 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780511984440 |c Online |9 978-0-511-98444-0 | ||
024 | 7 | |a 10.1017/CBO9780511984440 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511984440 | ||
035 | |a (OCoLC)992906332 | ||
035 | |a (DE-599)BVBBV043941245 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.7/4 |2 23 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
245 | 1 | 0 | |a Non-abelian fundamental groups in Iwasawa theory |c edited by John Coates [and others] |
246 | 1 | 3 | |a Non-abelian Fundamental Groups & Iwasawa Theory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 online resource (ix, 310 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 393 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak | |
520 | |a Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin–Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry | ||
650 | 4 | |a Iwasawa theory | |
650 | 4 | |a Non-Abelian groups | |
650 | 0 | 7 | |a Iwasawa-Theorie |0 (DE-588)4384573-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtabelsche Gruppe |0 (DE-588)4340007-3 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Nichtabelsche Gruppe |0 (DE-588)4340007-3 |D s |
689 | 0 | 1 | |a Iwasawa-Theorie |0 (DE-588)4384573-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Coates, J. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-64885-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511984440 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350215 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511984440 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511984440 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882679152641 |
---|---|
any_adam_object | |
author2 | Coates, J. |
author2_role | edt |
author2_variant | j c jc |
author_facet | Coates, J. |
building | Verbundindex |
bvnumber | BV043941245 |
classification_rvk | SI 320 SK 260 |
collection | ZDB-20-CBO |
contents | Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak |
ctrlnum | (ZDB-20-CBO)CR9780511984440 (OCoLC)992906332 (DE-599)BVBBV043941245 |
dewey-full | 512.7/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/4 |
dewey-search | 512.7/4 |
dewey-sort | 3512.7 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511984440 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03914nmm a2200541zcb4500</leader><controlfield tag="001">BV043941245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511984440</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-98444-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511984440</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511984440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992906332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian fundamental groups in Iwasawa theory</subfield><subfield code="c">edited by John Coates [and others]</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Non-abelian Fundamental Groups & Iwasawa Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 310 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">393</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin–Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iwasawa theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Abelian groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iwasawa-Theorie</subfield><subfield code="0">(DE-588)4384573-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtabelsche Gruppe</subfield><subfield code="0">(DE-588)4340007-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtabelsche Gruppe</subfield><subfield code="0">(DE-588)4340007-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Iwasawa-Theorie</subfield><subfield code="0">(DE-588)4384573-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coates, J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-64885-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511984440</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350215</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984440</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984440</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Aufsatzsammlung Konferenzschrift |
id | DE-604.BV043941245 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9780511984440 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350215 |
oclc_num | 992906332 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 310 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others] Non-abelian Fundamental Groups & Iwasawa Theory Cambridge Cambridge University Press 2011 1 online resource (ix, 310 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 393 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin–Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry Iwasawa theory Non-Abelian groups Iwasawa-Theorie (DE-588)4384573-3 gnd rswk-swf Nichtabelsche Gruppe (DE-588)4340007-3 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content (DE-588)1071861417 Konferenzschrift gnd-content Nichtabelsche Gruppe (DE-588)4340007-3 s Iwasawa-Theorie (DE-588)4384573-3 s DE-604 Coates, J. edt Erscheint auch als Druckausgabe 978-1-107-64885-2 https://doi.org/10.1017/CBO9780511984440 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Non-abelian fundamental groups in Iwasawa theory Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak Iwasawa theory Non-Abelian groups Iwasawa-Theorie (DE-588)4384573-3 gnd Nichtabelsche Gruppe (DE-588)4340007-3 gnd |
subject_GND | (DE-588)4384573-3 (DE-588)4340007-3 (DE-588)4143413-4 (DE-588)1071861417 |
title | Non-abelian fundamental groups in Iwasawa theory |
title_alt | Non-abelian Fundamental Groups & Iwasawa Theory |
title_auth | Non-abelian fundamental groups in Iwasawa theory |
title_exact_search | Non-abelian fundamental groups in Iwasawa theory |
title_full | Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others] |
title_fullStr | Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others] |
title_full_unstemmed | Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others] |
title_short | Non-abelian fundamental groups in Iwasawa theory |
title_sort | non abelian fundamental groups in iwasawa theory |
topic | Iwasawa theory Non-Abelian groups Iwasawa-Theorie (DE-588)4384573-3 gnd Nichtabelsche Gruppe (DE-588)4340007-3 gnd |
topic_facet | Iwasawa theory Non-Abelian groups Iwasawa-Theorie Nichtabelsche Gruppe Aufsatzsammlung Konferenzschrift |
url | https://doi.org/10.1017/CBO9780511984440 |
work_keys_str_mv | AT coatesj nonabelianfundamentalgroupsiniwasawatheory AT coatesj nonabelianfundamentalgroupsiwasawatheory |