Highly oscillatory problems:
The first book to approach high oscillation as a subject of its own, Highly Oscillatory Problems begins a new dialogue and lays the groundwork for future research. It ensues from the six-month programme held at the Newton Institute of Mathematical Sciences, which was the first time that different sp...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2009
|
Schriftenreihe: | London Mathematical Society lecture note series
366 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The first book to approach high oscillation as a subject of its own, Highly Oscillatory Problems begins a new dialogue and lays the groundwork for future research. It ensues from the six-month programme held at the Newton Institute of Mathematical Sciences, which was the first time that different specialists in highly oscillatory research, from diverse areas of mathematics and applications, had been brought together for a single intellectual agenda. This ground-breaking volume consists of eight review papers by leading experts in subject areas of active research, with an emphasis on computation: numerical Hamiltonian problems, highly oscillatory quadrature, rapid approximation of functions, high frequency wave propagation, numerical homogenization, discretization of the wave equation, high frequency scattering and the solution of elliptic boundary value problems |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 239 pages) |
ISBN: | 9781139107136 |
DOI: | 10.1017/CBO9781139107136 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941239 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9781139107136 |c Online |9 978-1-139-10713-6 | ||
024 | 7 | |a 10.1017/CBO9781139107136 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139107136 | ||
035 | |a (OCoLC)967774827 | ||
035 | |a (DE-599)BVBBV043941239 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 510 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
245 | 1 | 0 | |a Highly oscillatory problems |c edited by Bjorn Engquist [and others] |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2009 | |
300 | |a 1 online resource (xiii, 239 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 366 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Oscillations over long times in numerical Hamiltonian systems |r E. Hairer & C. Lubich |t Highly oscillatory quadrature |r D. Huybrechs & S. Olver |t Rapid function approximation by modified Fourier series |r D. Huybrechs & S. Olver |t Approximation of high frequency wave propagation problems |r M. Motamed & O. Runborg |t Wavelet based numerical homogenization |r B. Engquist & O. Runborg |t Plane wave methods for approximating the time harmonic wave equation |r T. Luostari, T. Huttunen & P. Monk |t Boundary integral methods in high frequency scattering |r S.N. Chandler-Wilde & I.G. Graham |t Novel analytical and numerical methods for elliptic boundary value problems |r A.S. Fokas & E.A. Spence |
520 | |a The first book to approach high oscillation as a subject of its own, Highly Oscillatory Problems begins a new dialogue and lays the groundwork for future research. It ensues from the six-month programme held at the Newton Institute of Mathematical Sciences, which was the first time that different specialists in highly oscillatory research, from diverse areas of mathematics and applications, had been brought together for a single intellectual agenda. This ground-breaking volume consists of eight review papers by leading experts in subject areas of active research, with an emphasis on computation: numerical Hamiltonian problems, highly oscillatory quadrature, rapid approximation of functions, high frequency wave propagation, numerical homogenization, discretization of the wave equation, high frequency scattering and the solution of elliptic boundary value problems | ||
650 | 4 | |a Oscillations | |
650 | 0 | 7 | |a Schwingung |0 (DE-588)4053999-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schwingung |0 (DE-588)4053999-4 |D s |
689 | 0 | 1 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Engquist, Björn |d 1945- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-13443-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139107136 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350209 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139107136 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139107136 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882684395520 |
---|---|
any_adam_object | |
author2 | Engquist, Björn 1945- |
author2_role | edt |
author2_variant | b e be |
author_additional | E. Hairer & C. Lubich D. Huybrechs & S. Olver M. Motamed & O. Runborg B. Engquist & O. Runborg T. Luostari, T. Huttunen & P. Monk S.N. Chandler-Wilde & I.G. Graham A.S. Fokas & E.A. Spence |
author_facet | Engquist, Björn 1945- |
building | Verbundindex |
bvnumber | BV043941239 |
classification_rvk | SI 320 SK 520 |
collection | ZDB-20-CBO |
contents | Oscillations over long times in numerical Hamiltonian systems Highly oscillatory quadrature Rapid function approximation by modified Fourier series Approximation of high frequency wave propagation problems Wavelet based numerical homogenization Plane wave methods for approximating the time harmonic wave equation Boundary integral methods in high frequency scattering Novel analytical and numerical methods for elliptic boundary value problems |
ctrlnum | (ZDB-20-CBO)CR9781139107136 (OCoLC)967774827 (DE-599)BVBBV043941239 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139107136 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03504nmm a2200505zcb4500</leader><controlfield tag="001">BV043941239</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107136</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-10713-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139107136</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139107136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967774827</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941239</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly oscillatory problems</subfield><subfield code="c">edited by Bjorn Engquist [and others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 239 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">366</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Oscillations over long times in numerical Hamiltonian systems</subfield><subfield code="r">E. Hairer & C. Lubich</subfield><subfield code="t">Highly oscillatory quadrature</subfield><subfield code="r">D. Huybrechs & S. Olver</subfield><subfield code="t">Rapid function approximation by modified Fourier series</subfield><subfield code="r">D. Huybrechs & S. Olver</subfield><subfield code="t">Approximation of high frequency wave propagation problems</subfield><subfield code="r">M. Motamed & O. Runborg</subfield><subfield code="t">Wavelet based numerical homogenization</subfield><subfield code="r">B. Engquist & O. Runborg</subfield><subfield code="t">Plane wave methods for approximating the time harmonic wave equation</subfield><subfield code="r">T. Luostari, T. Huttunen & P. Monk</subfield><subfield code="t">Boundary integral methods in high frequency scattering</subfield><subfield code="r">S.N. Chandler-Wilde & I.G. Graham</subfield><subfield code="t">Novel analytical and numerical methods for elliptic boundary value problems</subfield><subfield code="r">A.S. Fokas & E.A. Spence</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The first book to approach high oscillation as a subject of its own, Highly Oscillatory Problems begins a new dialogue and lays the groundwork for future research. It ensues from the six-month programme held at the Newton Institute of Mathematical Sciences, which was the first time that different specialists in highly oscillatory research, from diverse areas of mathematics and applications, had been brought together for a single intellectual agenda. This ground-breaking volume consists of eight review papers by leading experts in subject areas of active research, with an emphasis on computation: numerical Hamiltonian problems, highly oscillatory quadrature, rapid approximation of functions, high frequency wave propagation, numerical homogenization, discretization of the wave equation, high frequency scattering and the solution of elliptic boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engquist, Björn</subfield><subfield code="d">1945-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-13443-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139107136</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350209</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139107136</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139107136</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941239 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:15Z |
institution | BVB |
isbn | 9781139107136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350209 |
oclc_num | 967774827 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 239 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Highly oscillatory problems edited by Bjorn Engquist [and others] Cambridge Cambridge University Press 2009 1 online resource (xiii, 239 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 366 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Oscillations over long times in numerical Hamiltonian systems E. Hairer & C. Lubich Highly oscillatory quadrature D. Huybrechs & S. Olver Rapid function approximation by modified Fourier series D. Huybrechs & S. Olver Approximation of high frequency wave propagation problems M. Motamed & O. Runborg Wavelet based numerical homogenization B. Engquist & O. Runborg Plane wave methods for approximating the time harmonic wave equation T. Luostari, T. Huttunen & P. Monk Boundary integral methods in high frequency scattering S.N. Chandler-Wilde & I.G. Graham Novel analytical and numerical methods for elliptic boundary value problems A.S. Fokas & E.A. Spence The first book to approach high oscillation as a subject of its own, Highly Oscillatory Problems begins a new dialogue and lays the groundwork for future research. It ensues from the six-month programme held at the Newton Institute of Mathematical Sciences, which was the first time that different specialists in highly oscillatory research, from diverse areas of mathematics and applications, had been brought together for a single intellectual agenda. This ground-breaking volume consists of eight review papers by leading experts in subject areas of active research, with an emphasis on computation: numerical Hamiltonian problems, highly oscillatory quadrature, rapid approximation of functions, high frequency wave propagation, numerical homogenization, discretization of the wave equation, high frequency scattering and the solution of elliptic boundary value problems Oscillations Schwingung (DE-588)4053999-4 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf Schwingung (DE-588)4053999-4 s Computersimulation (DE-588)4148259-1 s 1\p DE-604 Engquist, Björn 1945- edt Erscheint auch als Druckausgabe 978-0-521-13443-9 https://doi.org/10.1017/CBO9781139107136 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Highly oscillatory problems Oscillations over long times in numerical Hamiltonian systems Highly oscillatory quadrature Rapid function approximation by modified Fourier series Approximation of high frequency wave propagation problems Wavelet based numerical homogenization Plane wave methods for approximating the time harmonic wave equation Boundary integral methods in high frequency scattering Novel analytical and numerical methods for elliptic boundary value problems Oscillations Schwingung (DE-588)4053999-4 gnd Computersimulation (DE-588)4148259-1 gnd |
subject_GND | (DE-588)4053999-4 (DE-588)4148259-1 |
title | Highly oscillatory problems |
title_alt | Oscillations over long times in numerical Hamiltonian systems Highly oscillatory quadrature Rapid function approximation by modified Fourier series Approximation of high frequency wave propagation problems Wavelet based numerical homogenization Plane wave methods for approximating the time harmonic wave equation Boundary integral methods in high frequency scattering Novel analytical and numerical methods for elliptic boundary value problems |
title_auth | Highly oscillatory problems |
title_exact_search | Highly oscillatory problems |
title_full | Highly oscillatory problems edited by Bjorn Engquist [and others] |
title_fullStr | Highly oscillatory problems edited by Bjorn Engquist [and others] |
title_full_unstemmed | Highly oscillatory problems edited by Bjorn Engquist [and others] |
title_short | Highly oscillatory problems |
title_sort | highly oscillatory problems |
topic | Oscillations Schwingung (DE-588)4053999-4 gnd Computersimulation (DE-588)4148259-1 gnd |
topic_facet | Oscillations Schwingung Computersimulation |
url | https://doi.org/10.1017/CBO9781139107136 |
work_keys_str_mv | AT engquistbjorn highlyoscillatoryproblems |