An introduction to invariants and moduli:
Incorporated in this 2003 volume are the first two books in Mukai's series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last the...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | Cambridge studies in advanced mathematics
81 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | Incorporated in this 2003 volume are the first two books in Mukai's series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Amongst other things this volume includes an improved presentation of the classical foundations of invarant theory that, in addition to geometers, would be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (xx, 503 Seiten) |
ISBN: | 9781316257074 |
DOI: | 10.1017/CBO9781316257074 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941048 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9781316257074 |c Online |9 978-1-316-25707-4 | ||
024 | 7 | |a 10.1017/CBO9781316257074 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316257074 | ||
035 | |a (OCoLC)967774129 | ||
035 | |a (DE-599)BVBBV043941048 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 512.5 |2 21 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Mukai, Shigeru |d 1953- |e Verfasser |0 (DE-588)142740756 |4 aut | |
240 | 1 | 0 | |a Mojurai riron |
245 | 1 | 0 | |a An introduction to invariants and moduli |c Shigeru Mukai ; translated by W.M. Oxbury |
246 | 1 | 3 | |a An Introduction to Invariants & Moduli |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 Online-Ressource (xx, 503 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 81 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Incorporated in this 2003 volume are the first two books in Mukai's series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Amongst other things this volume includes an improved presentation of the classical foundations of invarant theory that, in addition to geometers, would be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts | ||
650 | 4 | |a Invariants | |
650 | 4 | |a Moduli theory | |
650 | 0 | 7 | |a Invariante |0 (DE-588)4128781-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Mannigfaltigkeit |0 (DE-588)4128509-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 0 | 1 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 0 | 2 | |a Algebraische Mannigfaltigkeit |0 (DE-588)4128509-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Oxbury, W. M. |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-80906-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-40636-0 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 81 |w (DE-604)BV044781283 |9 81 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316257074 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350017 | ||
966 | e | |u https://doi.org/10.1017/CBO9781316257074 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316257074 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316257074 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882282790912 |
---|---|
any_adam_object | |
author | Mukai, Shigeru 1953- |
author2 | Oxbury, W. M. |
author2_role | trl |
author2_variant | w m o wm wmo |
author_GND | (DE-588)142740756 |
author_facet | Mukai, Shigeru 1953- Oxbury, W. M. |
author_role | aut |
author_sort | Mukai, Shigeru 1953- |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV043941048 |
classification_rvk | SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316257074 (OCoLC)967774129 (DE-599)BVBBV043941048 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316257074 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03235nmm a2200577zcb4500</leader><controlfield tag="001">BV043941048</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316257074</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-25707-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316257074</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316257074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967774129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941048</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukai, Shigeru</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142740756</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Mojurai riron</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to invariants and moduli</subfield><subfield code="c">Shigeru Mukai ; translated by W.M. Oxbury</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">An Introduction to Invariants & Moduli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 503 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Incorporated in this 2003 volume are the first two books in Mukai's series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Amongst other things this volume includes an improved presentation of the classical foundations of invarant theory that, in addition to geometers, would be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oxbury, W. M.</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-80906-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-40636-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">81</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">81</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316257074</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350017</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316257074</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316257074</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316257074</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941048 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781316257074 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350017 |
oclc_num | 967774129 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 Online-Ressource (xx, 503 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Mukai, Shigeru 1953- Verfasser (DE-588)142740756 aut Mojurai riron An introduction to invariants and moduli Shigeru Mukai ; translated by W.M. Oxbury An Introduction to Invariants & Moduli Cambridge Cambridge University Press 2003 1 Online-Ressource (xx, 503 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 81 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Incorporated in this 2003 volume are the first two books in Mukai's series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Amongst other things this volume includes an improved presentation of the classical foundations of invarant theory that, in addition to geometers, would be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts Invariants Moduli theory Invariante (DE-588)4128781-2 gnd rswk-swf Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Modultheorie (DE-588)4170336-4 s Invariante (DE-588)4128781-2 s Algebraische Mannigfaltigkeit (DE-588)4128509-8 s DE-604 Oxbury, W. M. trl Erscheint auch als Druck-Ausgabe 978-0-521-80906-1 Erscheint auch als Druck-Ausgabe 978-1-107-40636-0 Cambridge studies in advanced mathematics 81 (DE-604)BV044781283 81 https://doi.org/10.1017/CBO9781316257074 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mukai, Shigeru 1953- An introduction to invariants and moduli Cambridge studies in advanced mathematics Invariants Moduli theory Invariante (DE-588)4128781-2 gnd Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd Modultheorie (DE-588)4170336-4 gnd |
subject_GND | (DE-588)4128781-2 (DE-588)4128509-8 (DE-588)4170336-4 |
title | An introduction to invariants and moduli |
title_alt | Mojurai riron An Introduction to Invariants & Moduli |
title_auth | An introduction to invariants and moduli |
title_exact_search | An introduction to invariants and moduli |
title_full | An introduction to invariants and moduli Shigeru Mukai ; translated by W.M. Oxbury |
title_fullStr | An introduction to invariants and moduli Shigeru Mukai ; translated by W.M. Oxbury |
title_full_unstemmed | An introduction to invariants and moduli Shigeru Mukai ; translated by W.M. Oxbury |
title_short | An introduction to invariants and moduli |
title_sort | an introduction to invariants and moduli |
topic | Invariants Moduli theory Invariante (DE-588)4128781-2 gnd Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd Modultheorie (DE-588)4170336-4 gnd |
topic_facet | Invariants Moduli theory Invariante Algebraische Mannigfaltigkeit Modultheorie |
url | https://doi.org/10.1017/CBO9781316257074 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT mukaishigeru mojurairiron AT oxburywm mojurairiron AT mukaishigeru anintroductiontoinvariantsandmoduli AT oxburywm anintroductiontoinvariantsandmoduli AT mukaishigeru anintroductiontoinvariantsmoduli AT oxburywm anintroductiontoinvariantsmoduli |