Complex analysis:
Written by a master of the subject, this text will be appreciated by students and experts for the way it develops the classical theory of functions of a complex variable in a clear and straightforward manner. In general, the approach taken here emphasises geometrical aspects of the theory in order t...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge studies in advanced mathematics
107 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Written by a master of the subject, this text will be appreciated by students and experts for the way it develops the classical theory of functions of a complex variable in a clear and straightforward manner. In general, the approach taken here emphasises geometrical aspects of the theory in order to avoid some of the topological pitfalls associated with this subject. Thus, Cauchy's integral formula is first proved in a topologically simple case from which the author deduces the basic properties of holomorphic functions. Starting from the basics, students are led on to the study of conformal mappings, Riemann's mapping theorem, analytic functions on a Riemann surface, and ultimately the Riemann-Roch and Abel theorems. Profusely illustrated, and with plenty of examples, and problems (solutions to many of which are included), this book should be a stimulating text for advanced courses in complex analysis |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 406 Seiten) |
ISBN: | 9780511804045 |
DOI: | 10.1017/CBO9780511804045 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941046 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511804045 |c Online |9 978-0-511-80404-5 | ||
024 | 7 | |a 10.1017/CBO9780511804045 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511804045 | ||
035 | |a (OCoLC)967678917 | ||
035 | |a (DE-599)BVBBV043941046 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 515.9 |2 22 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Kodaira, Kunihiko |d 1915-1997 |e Verfasser |0 (DE-588)118777645 |4 aut | |
240 | 1 | 0 | |a Complex analysis |
245 | 1 | 0 | |a Complex analysis |c Kunihiko Kodaira ; translated by A. Sevenster ; edited by A.F. Beardon and T.K. Carne |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (ix, 406 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 107 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Written by a master of the subject, this text will be appreciated by students and experts for the way it develops the classical theory of functions of a complex variable in a clear and straightforward manner. In general, the approach taken here emphasises geometrical aspects of the theory in order to avoid some of the topological pitfalls associated with this subject. Thus, Cauchy's integral formula is first proved in a topologically simple case from which the author deduces the basic properties of holomorphic functions. Starting from the basics, students are led on to the study of conformal mappings, Riemann's mapping theorem, analytic functions on a Riemann surface, and ultimately the Riemann-Roch and Abel theorems. Profusely illustrated, and with plenty of examples, and problems (solutions to many of which are included), this book should be a stimulating text for advanced courses in complex analysis | ||
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionstheorie |0 (DE-588)4301988-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Funktionstheorie |0 (DE-588)4301988-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Beardon, Alan F. |0 (DE-588)110704886 |4 edt | |
700 | 1 | |a Carne, T. K. |4 edt | |
700 | 1 | |a Sevenster, A. |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-80937-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-00398-8 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 107 |w (DE-604)BV044781283 |9 107 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511804045 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350015 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511804045 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511804045 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511804045 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882272305152 |
---|---|
any_adam_object | |
author | Kodaira, Kunihiko 1915-1997 |
author2 | Beardon, Alan F. Carne, T. K. Sevenster, A. |
author2_role | edt edt trl |
author2_variant | a f b af afb t k c tk tkc a s as |
author_GND | (DE-588)118777645 (DE-588)110704886 |
author_facet | Kodaira, Kunihiko 1915-1997 Beardon, Alan F. Carne, T. K. Sevenster, A. |
author_role | aut |
author_sort | Kodaira, Kunihiko 1915-1997 |
author_variant | k k kk |
building | Verbundindex |
bvnumber | BV043941046 |
classification_rvk | SK 700 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511804045 (OCoLC)967678917 (DE-599)BVBBV043941046 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511804045 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03594nmm a2200613zcb4500</leader><controlfield tag="001">BV043941046</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511804045</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-80404-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511804045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511804045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941046</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kodaira, Kunihiko</subfield><subfield code="d">1915-1997</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118777645</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Complex analysis</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex analysis</subfield><subfield code="c">Kunihiko Kodaira ; translated by A. Sevenster ; edited by A.F. Beardon and T.K. Carne</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 406 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">107</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Written by a master of the subject, this text will be appreciated by students and experts for the way it develops the classical theory of functions of a complex variable in a clear and straightforward manner. In general, the approach taken here emphasises geometrical aspects of the theory in order to avoid some of the topological pitfalls associated with this subject. Thus, Cauchy's integral formula is first proved in a topologically simple case from which the author deduces the basic properties of holomorphic functions. Starting from the basics, students are led on to the study of conformal mappings, Riemann's mapping theorem, analytic functions on a Riemann surface, and ultimately the Riemann-Roch and Abel theorems. Profusely illustrated, and with plenty of examples, and problems (solutions to many of which are included), this book should be a stimulating text for advanced courses in complex analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionstheorie</subfield><subfield code="0">(DE-588)4301988-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionstheorie</subfield><subfield code="0">(DE-588)4301988-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beardon, Alan F.</subfield><subfield code="0">(DE-588)110704886</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carne, T. K.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sevenster, A.</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-80937-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-00398-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">107</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511804045</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350015</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511804045</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511804045</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511804045</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043941046 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511804045 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350015 |
oclc_num | 967678917 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (ix, 406 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Kodaira, Kunihiko 1915-1997 Verfasser (DE-588)118777645 aut Complex analysis Complex analysis Kunihiko Kodaira ; translated by A. Sevenster ; edited by A.F. Beardon and T.K. Carne Cambridge Cambridge University Press 2007 1 online resource (ix, 406 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 107 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Written by a master of the subject, this text will be appreciated by students and experts for the way it develops the classical theory of functions of a complex variable in a clear and straightforward manner. In general, the approach taken here emphasises geometrical aspects of the theory in order to avoid some of the topological pitfalls associated with this subject. Thus, Cauchy's integral formula is first proved in a topologically simple case from which the author deduces the basic properties of holomorphic functions. Starting from the basics, students are led on to the study of conformal mappings, Riemann's mapping theorem, analytic functions on a Riemann surface, and ultimately the Riemann-Roch and Abel theorems. Profusely illustrated, and with plenty of examples, and problems (solutions to many of which are included), this book should be a stimulating text for advanced courses in complex analysis Functions of complex variables Mathematical analysis Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Funktionstheorie (DE-588)4301988-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Funktionentheorie (DE-588)4018935-1 s DE-604 Funktionstheorie (DE-588)4301988-2 s 2\p DE-604 Beardon, Alan F. (DE-588)110704886 edt Carne, T. K. edt Sevenster, A. trl Erscheint auch als Druck-Ausgabe 978-0-521-80937-5 Erscheint auch als Druck-Ausgabe 978-0-521-00398-8 Cambridge studies in advanced mathematics 107 (DE-604)BV044781283 107 https://doi.org/10.1017/CBO9780511804045 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kodaira, Kunihiko 1915-1997 Complex analysis Cambridge studies in advanced mathematics Functions of complex variables Mathematical analysis Funktionentheorie (DE-588)4018935-1 gnd Funktionstheorie (DE-588)4301988-2 gnd |
subject_GND | (DE-588)4018935-1 (DE-588)4301988-2 (DE-588)4123623-3 |
title | Complex analysis |
title_alt | Complex analysis |
title_auth | Complex analysis |
title_exact_search | Complex analysis |
title_full | Complex analysis Kunihiko Kodaira ; translated by A. Sevenster ; edited by A.F. Beardon and T.K. Carne |
title_fullStr | Complex analysis Kunihiko Kodaira ; translated by A. Sevenster ; edited by A.F. Beardon and T.K. Carne |
title_full_unstemmed | Complex analysis Kunihiko Kodaira ; translated by A. Sevenster ; edited by A.F. Beardon and T.K. Carne |
title_short | Complex analysis |
title_sort | complex analysis |
topic | Functions of complex variables Mathematical analysis Funktionentheorie (DE-588)4018935-1 gnd Funktionstheorie (DE-588)4301988-2 gnd |
topic_facet | Functions of complex variables Mathematical analysis Funktionentheorie Funktionstheorie Lehrbuch |
url | https://doi.org/10.1017/CBO9780511804045 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT kodairakunihiko complexanalysis AT beardonalanf complexanalysis AT carnetk complexanalysis AT sevenstera complexanalysis |