Quantum groups: a path to current algebra
Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for th...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Australian Mathematical Society lecture series
19 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986 |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xviii, 141 pages) |
ISBN: | 9780511618505 |
DOI: | 10.1017/CBO9780511618505 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941042 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511618505 |c Online |9 978-0-511-61850-5 | ||
024 | 7 | |a 10.1017/CBO9780511618505 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511618505 | ||
035 | |a (OCoLC)699167705 | ||
035 | |a (DE-599)BVBBV043941042 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Street, Ross |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum groups |b a path to current algebra |c Ross Street ; technical editor, Ross Moore |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xviii, 141 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Australian Mathematical Society lecture series |v 19 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986 | ||
650 | 4 | |a Quantum groups | |
650 | 4 | |a Algebra | |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Moore, Ross |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-69524-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511618505 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350011 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511618505 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511618505 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882266013696 |
---|---|
any_adam_object | |
author | Street, Ross 1945- |
author2 | Moore, Ross |
author2_role | edt |
author2_variant | r m rm |
author_facet | Street, Ross 1945- Moore, Ross |
author_role | aut |
author_sort | Street, Ross 1945- |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV043941042 |
classification_rvk | SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511618505 (OCoLC)699167705 (DE-599)BVBBV043941042 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511618505 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02805nmm a2200481zcb4500</leader><controlfield tag="001">BV043941042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511618505</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61850-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511618505</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511618505</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699167705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Street, Ross</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum groups</subfield><subfield code="b">a path to current algebra</subfield><subfield code="c">Ross Street ; technical editor, Ross Moore</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 141 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Australian Mathematical Society lecture series</subfield><subfield code="v">19</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, Ross</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-69524-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511618505</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350011</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511618505</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511618505</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941042 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511618505 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350011 |
oclc_num | 699167705 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xviii, 141 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Australian Mathematical Society lecture series |
spelling | Street, Ross 1945- Verfasser aut Quantum groups a path to current algebra Ross Street ; technical editor, Ross Moore Cambridge Cambridge University Press 2007 1 online resource (xviii, 141 pages) txt rdacontent c rdamedia cr rdacarrier Australian Mathematical Society lecture series 19 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986 Quantum groups Algebra Quantengruppe (DE-588)4252437-4 gnd rswk-swf Quantengruppe (DE-588)4252437-4 s 1\p DE-604 Moore, Ross edt Erscheint auch als Druckausgabe 978-0-521-69524-4 https://doi.org/10.1017/CBO9780511618505 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Street, Ross 1945- Quantum groups a path to current algebra Quantum groups Algebra Quantengruppe (DE-588)4252437-4 gnd |
subject_GND | (DE-588)4252437-4 |
title | Quantum groups a path to current algebra |
title_auth | Quantum groups a path to current algebra |
title_exact_search | Quantum groups a path to current algebra |
title_full | Quantum groups a path to current algebra Ross Street ; technical editor, Ross Moore |
title_fullStr | Quantum groups a path to current algebra Ross Street ; technical editor, Ross Moore |
title_full_unstemmed | Quantum groups a path to current algebra Ross Street ; technical editor, Ross Moore |
title_short | Quantum groups |
title_sort | quantum groups a path to current algebra |
title_sub | a path to current algebra |
topic | Quantum groups Algebra Quantengruppe (DE-588)4252437-4 gnd |
topic_facet | Quantum groups Algebra Quantengruppe |
url | https://doi.org/10.1017/CBO9780511618505 |
work_keys_str_mv | AT streetross quantumgroupsapathtocurrentalgebra AT mooreross quantumgroupsapathtocurrentalgebra |