Integral geometry and geometric probability:
Now available in the Cambridge Mathematical Library, the classic work from Luis Santaló. Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved to be useful in several fields ranging from pure mathematics (measure theory,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2004
|
Ausgabe: | Second edition |
Schriftenreihe: | Cambridge mathematical library
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Now available in the Cambridge Mathematical Library, the classic work from Luis Santaló. Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 404 pages) |
ISBN: | 9780511617331 |
DOI: | 10.1017/CBO9780511617331 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043941035 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780511617331 |c Online |9 978-0-511-61733-1 | ||
024 | 7 | |a 10.1017/CBO9780511617331 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511617331 | ||
035 | |a (OCoLC)890767020 | ||
035 | |a (DE-599)BVBBV043941035 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.362 |2 21 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
100 | 1 | |a Santaló, Luis A. |d 1911-2001 |e Verfasser |4 aut | |
245 | 1 | 0 | |a Integral geometry and geometric probability |c Luis A. Santaló ; with a foreword by Mark Kac |
246 | 1 | 3 | |a Integral Geometry & Geometric Probability |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2004 | |
300 | |a 1 online resource (xvii, 404 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge mathematical library | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Now available in the Cambridge Mathematical Library, the classic work from Luis Santaló. Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field | ||
650 | 4 | |a Geometric probabilities | |
650 | 4 | |a Integral geometry | |
650 | 0 | 7 | |a Geometrische Wahrscheinlichkeit |0 (DE-588)4156727-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integralgeometrie |0 (DE-588)4161911-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Integralgeometrie |0 (DE-588)4161911-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geometrische Wahrscheinlichkeit |0 (DE-588)4156727-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-52344-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511617331 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029350004 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511617331 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511617331 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882256576512 |
---|---|
any_adam_object | |
author | Santaló, Luis A. 1911-2001 |
author_facet | Santaló, Luis A. 1911-2001 |
author_role | aut |
author_sort | Santaló, Luis A. 1911-2001 |
author_variant | l a s la las |
building | Verbundindex |
bvnumber | BV043941035 |
classification_rvk | SK 370 SK 800 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511617331 (OCoLC)890767020 (DE-599)BVBBV043941035 |
dewey-full | 516.362 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.362 |
dewey-search | 516.362 |
dewey-sort | 3516.362 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511617331 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03422nmm a2200649zc 4500</leader><controlfield tag="001">BV043941035</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511617331</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61733-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511617331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511617331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890767020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941035</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.362</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santaló, Luis A.</subfield><subfield code="d">1911-2001</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integral geometry and geometric probability</subfield><subfield code="c">Luis A. Santaló ; with a foreword by Mark Kac</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Integral Geometry & Geometric Probability</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 404 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge mathematical library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Now available in the Cambridge Mathematical Library, the classic work from Luis Santaló. Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4156727-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgeometrie</subfield><subfield code="0">(DE-588)4161911-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integralgeometrie</subfield><subfield code="0">(DE-588)4161911-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrische Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4156727-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-52344-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511617331</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350004</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511617331</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511617331</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941035 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511617331 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350004 |
oclc_num | 890767020 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 404 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge mathematical library |
spelling | Santaló, Luis A. 1911-2001 Verfasser aut Integral geometry and geometric probability Luis A. Santaló ; with a foreword by Mark Kac Integral Geometry & Geometric Probability Second edition Cambridge Cambridge University Press 2004 1 online resource (xvii, 404 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge mathematical library Title from publisher's bibliographic system (viewed on 05 Oct 2015) Now available in the Cambridge Mathematical Library, the classic work from Luis Santaló. Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field Geometric probabilities Integral geometry Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Integralgeometrie (DE-588)4161911-0 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Integralgeometrie (DE-588)4161911-0 s 1\p DE-604 Geometrische Wahrscheinlichkeit (DE-588)4156727-4 s 2\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 3\p DE-604 Geometrie (DE-588)4020236-7 s 4\p DE-604 Erscheint auch als Druckausgabe 978-0-521-52344-8 https://doi.org/10.1017/CBO9780511617331 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Santaló, Luis A. 1911-2001 Integral geometry and geometric probability Geometric probabilities Integral geometry Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd Geometrie (DE-588)4020236-7 gnd Integralgeometrie (DE-588)4161911-0 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
subject_GND | (DE-588)4156727-4 (DE-588)4020236-7 (DE-588)4161911-0 (DE-588)4064324-4 |
title | Integral geometry and geometric probability |
title_alt | Integral Geometry & Geometric Probability |
title_auth | Integral geometry and geometric probability |
title_exact_search | Integral geometry and geometric probability |
title_full | Integral geometry and geometric probability Luis A. Santaló ; with a foreword by Mark Kac |
title_fullStr | Integral geometry and geometric probability Luis A. Santaló ; with a foreword by Mark Kac |
title_full_unstemmed | Integral geometry and geometric probability Luis A. Santaló ; with a foreword by Mark Kac |
title_short | Integral geometry and geometric probability |
title_sort | integral geometry and geometric probability |
topic | Geometric probabilities Integral geometry Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd Geometrie (DE-588)4020236-7 gnd Integralgeometrie (DE-588)4161911-0 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
topic_facet | Geometric probabilities Integral geometry Geometrische Wahrscheinlichkeit Geometrie Integralgeometrie Wahrscheinlichkeitsrechnung |
url | https://doi.org/10.1017/CBO9780511617331 |
work_keys_str_mv | AT santaloluisa integralgeometryandgeometricprobability AT santaloluisa integralgeometrygeometricprobability |