Bäcklund and Darboux transformations: geometry and modern applications in soliton theory
This book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Bäck...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge texts in applied mathematics
30 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Bäcklund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Bäcklund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory. It is with these transformations and the links they afford between the classical differential geometry of surfaces and the nonlinear equations of soliton theory that the present text is concerned. In this geometric context, solitonic equations arise out of the Gauß-Mainardi-Codazzi equations for various types of surfaces that admit invariance under Bäcklund-Darboux transformations. This text is appropriate for use at a higher undergraduate or graduate level for applied mathematicians or mathematical physics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 413 pages) |
ISBN: | 9780511606359 |
DOI: | 10.1017/CBO9780511606359 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940983 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780511606359 |c Online |9 978-0-511-60635-9 | ||
024 | 7 | |a 10.1017/CBO9780511606359 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511606359 | ||
035 | |a (OCoLC)704476724 | ||
035 | |a (DE-599)BVBBV043940983 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.124 |2 21 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Rogers, C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bäcklund and Darboux transformations |b geometry and modern applications in soliton theory |c C. Rogers, W.K. Schief |
246 | 1 | 3 | |a Bäcklund & Darboux Transformations |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xvii, 413 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics |v 30 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Bäcklund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Bäcklund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory. It is with these transformations and the links they afford between the classical differential geometry of surfaces and the nonlinear equations of soliton theory that the present text is concerned. In this geometric context, solitonic equations arise out of the Gauß-Mainardi-Codazzi equations for various types of surfaces that admit invariance under Bäcklund-Darboux transformations. This text is appropriate for use at a higher undergraduate or graduate level for applied mathematicians or mathematical physics | ||
650 | 4 | |a Solitons | |
650 | 4 | |a Bäcklund transformations | |
650 | 4 | |a Darboux transformations | |
700 | 1 | |a Schief, W. K. |d 1964- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-01288-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-81331-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511606359 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349952 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511606359 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511606359 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882137038848 |
---|---|
any_adam_object | |
author | Rogers, C. |
author_facet | Rogers, C. |
author_role | aut |
author_sort | Rogers, C. |
author_variant | c r cr |
building | Verbundindex |
bvnumber | BV043940983 |
classification_rvk | SK 370 SK 560 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511606359 (OCoLC)704476724 (DE-599)BVBBV043940983 |
dewey-full | 530.124 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.124 |
dewey-search | 530.124 |
dewey-sort | 3530.124 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511606359 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02980nmm a2200481zcb4500</leader><controlfield tag="001">BV043940983</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511606359</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60635-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511606359</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511606359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704476724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940983</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.124</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rogers, C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bäcklund and Darboux transformations</subfield><subfield code="b">geometry and modern applications in soliton theory</subfield><subfield code="c">C. Rogers, W.K. Schief</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Bäcklund & Darboux Transformations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 413 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">30</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Bäcklund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Bäcklund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory. It is with these transformations and the links they afford between the classical differential geometry of surfaces and the nonlinear equations of soliton theory that the present text is concerned. In this geometric context, solitonic equations arise out of the Gauß-Mainardi-Codazzi equations for various types of surfaces that admit invariance under Bäcklund-Darboux transformations. This text is appropriate for use at a higher undergraduate or graduate level for applied mathematicians or mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solitons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bäcklund transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Darboux transformations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schief, W. K.</subfield><subfield code="d">1964-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-01288-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-81331-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511606359</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349952</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511606359</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511606359</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940983 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511606359 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349952 |
oclc_num | 704476724 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 413 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | Rogers, C. Verfasser aut Bäcklund and Darboux transformations geometry and modern applications in soliton theory C. Rogers, W.K. Schief Bäcklund & Darboux Transformations Cambridge Cambridge University Press 2002 1 online resource (xvii, 413 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics 30 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Bäcklund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Bäcklund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory. It is with these transformations and the links they afford between the classical differential geometry of surfaces and the nonlinear equations of soliton theory that the present text is concerned. In this geometric context, solitonic equations arise out of the Gauß-Mainardi-Codazzi equations for various types of surfaces that admit invariance under Bäcklund-Darboux transformations. This text is appropriate for use at a higher undergraduate or graduate level for applied mathematicians or mathematical physics Solitons Bäcklund transformations Darboux transformations Schief, W. K. 1964- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-01288-1 Erscheint auch als Druckausgabe 978-0-521-81331-0 https://doi.org/10.1017/CBO9780511606359 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rogers, C. Bäcklund and Darboux transformations geometry and modern applications in soliton theory Solitons Bäcklund transformations Darboux transformations |
title | Bäcklund and Darboux transformations geometry and modern applications in soliton theory |
title_alt | Bäcklund & Darboux Transformations |
title_auth | Bäcklund and Darboux transformations geometry and modern applications in soliton theory |
title_exact_search | Bäcklund and Darboux transformations geometry and modern applications in soliton theory |
title_full | Bäcklund and Darboux transformations geometry and modern applications in soliton theory C. Rogers, W.K. Schief |
title_fullStr | Bäcklund and Darboux transformations geometry and modern applications in soliton theory C. Rogers, W.K. Schief |
title_full_unstemmed | Bäcklund and Darboux transformations geometry and modern applications in soliton theory C. Rogers, W.K. Schief |
title_short | Bäcklund and Darboux transformations |
title_sort | backlund and darboux transformations geometry and modern applications in soliton theory |
title_sub | geometry and modern applications in soliton theory |
topic | Solitons Bäcklund transformations Darboux transformations |
topic_facet | Solitons Bäcklund transformations Darboux transformations |
url | https://doi.org/10.1017/CBO9780511606359 |
work_keys_str_mv | AT rogersc backlundanddarbouxtransformationsgeometryandmodernapplicationsinsolitontheory AT schiefwk backlundanddarbouxtransformationsgeometryandmodernapplicationsinsolitontheory AT rogersc backlunddarbouxtransformations AT schiefwk backlunddarbouxtransformations |