Quantum stochastic processes and noncommutative geometry:

The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sinha, Kalyan B. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2007
Schriftenreihe:Cambridge tracts in mathematics 169
Schlagworte:
Online-Zugang:BSB01
FHN01
UBR01
URL des Erstveröffentlichers
Zusammenfassung:The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics
Beschreibung:1 Online-Ressource (x, 290 Seiten)
ISBN:9780511618529
DOI:10.1017/CBO9780511618529

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen