Quantum stochastic processes and noncommutative geometry:
The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge tracts in mathematics
169 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics |
Beschreibung: | 1 Online-Ressource (x, 290 Seiten) |
ISBN: | 9780511618529 |
DOI: | 10.1017/CBO9780511618529 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940978 | ||
003 | DE-604 | ||
005 | 20190516 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511618529 |c Online |9 978-0-511-61852-9 | ||
024 | 7 | |a 10.1017/CBO9780511618529 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511618529 | ||
035 | |a (OCoLC)850820993 | ||
035 | |a (DE-599)BVBBV043940978 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 519.2/3 |2 22 | |
100 | 1 | |a Sinha, Kalyan B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum stochastic processes and noncommutative geometry |c Kalyan B. Sinha, Debashish Goswami |
246 | 1 | 3 | |a Quantum Stochastic Processes & Noncommutative Geometry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 Online-Ressource (x, 290 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 169 | |
505 | 8 | |a Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes | |
520 | |a The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics | ||
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Stochastic processes | |
650 | 4 | |a Quantum groups | |
650 | 4 | |a Noncommutative differential geometry | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Stochastische Quantisierung |0 (DE-588)4238900-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtkommutative Differentialgeometrie |0 (DE-588)4311174-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Quantisierung |0 (DE-588)4238900-8 |D s |
689 | 0 | 1 | |a Nichtkommutative Differentialgeometrie |0 (DE-588)4311174-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 1 | 1 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 1 | 2 | |a Nichtkommutative Differentialgeometrie |0 (DE-588)4311174-9 |D s |
689 | 1 | 3 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Goswami, Debashish |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-83450-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511618529 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349947 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511618529 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511618529 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511618529 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882117115904 |
---|---|
any_adam_object | |
author | Sinha, Kalyan B. |
author_facet | Sinha, Kalyan B. |
author_role | aut |
author_sort | Sinha, Kalyan B. |
author_variant | k b s kb kbs |
building | Verbundindex |
bvnumber | BV043940978 |
collection | ZDB-20-CBO |
contents | Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes |
ctrlnum | (ZDB-20-CBO)CR9780511618529 (OCoLC)850820993 (DE-599)BVBBV043940978 |
dewey-full | 519.2/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/3 |
dewey-search | 519.2/3 |
dewey-sort | 3519.2 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511618529 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04101nmm a2200637zcb4500</leader><controlfield tag="001">BV043940978</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190516 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511618529</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61852-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511618529</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511618529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850820993</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940978</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sinha, Kalyan B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum stochastic processes and noncommutative geometry</subfield><subfield code="c">Kalyan B. Sinha, Debashish Goswami</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Quantum Stochastic Processes & Noncommutative Geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 290 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">169</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noncommutative differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Quantisierung</subfield><subfield code="0">(DE-588)4238900-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Differentialgeometrie</subfield><subfield code="0">(DE-588)4311174-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Quantisierung</subfield><subfield code="0">(DE-588)4238900-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtkommutative Differentialgeometrie</subfield><subfield code="0">(DE-588)4311174-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Nichtkommutative Differentialgeometrie</subfield><subfield code="0">(DE-588)4311174-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goswami, Debashish</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-83450-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511618529</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349947</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511618529</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511618529</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511618529</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940978 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511618529 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349947 |
oclc_num | 850820993 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (x, 290 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Sinha, Kalyan B. Verfasser aut Quantum stochastic processes and noncommutative geometry Kalyan B. Sinha, Debashish Goswami Quantum Stochastic Processes & Noncommutative Geometry Cambridge Cambridge University Press 2007 1 Online-Ressource (x, 290 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 169 Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics Quantentheorie Stochastic processes Quantum groups Noncommutative differential geometry Quantum theory Stochastische Quantisierung (DE-588)4238900-8 gnd rswk-swf Quantengruppe (DE-588)4252437-4 gnd rswk-swf Nichtkommutative Differentialgeometrie (DE-588)4311174-9 gnd rswk-swf Quantentheorie (DE-588)4047992-4 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastische Quantisierung (DE-588)4238900-8 s Nichtkommutative Differentialgeometrie (DE-588)4311174-9 s DE-604 Stochastischer Prozess (DE-588)4057630-9 s Quantengruppe (DE-588)4252437-4 s Quantentheorie (DE-588)4047992-4 s Goswami, Debashish Sonstige oth Erscheint auch als Druck-Ausgabe 978-0-521-83450-6 https://doi.org/10.1017/CBO9780511618529 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sinha, Kalyan B. Quantum stochastic processes and noncommutative geometry Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes Quantentheorie Stochastic processes Quantum groups Noncommutative differential geometry Quantum theory Stochastische Quantisierung (DE-588)4238900-8 gnd Quantengruppe (DE-588)4252437-4 gnd Nichtkommutative Differentialgeometrie (DE-588)4311174-9 gnd Quantentheorie (DE-588)4047992-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4238900-8 (DE-588)4252437-4 (DE-588)4311174-9 (DE-588)4047992-4 (DE-588)4057630-9 |
title | Quantum stochastic processes and noncommutative geometry |
title_alt | Quantum Stochastic Processes & Noncommutative Geometry |
title_auth | Quantum stochastic processes and noncommutative geometry |
title_exact_search | Quantum stochastic processes and noncommutative geometry |
title_full | Quantum stochastic processes and noncommutative geometry Kalyan B. Sinha, Debashish Goswami |
title_fullStr | Quantum stochastic processes and noncommutative geometry Kalyan B. Sinha, Debashish Goswami |
title_full_unstemmed | Quantum stochastic processes and noncommutative geometry Kalyan B. Sinha, Debashish Goswami |
title_short | Quantum stochastic processes and noncommutative geometry |
title_sort | quantum stochastic processes and noncommutative geometry |
topic | Quantentheorie Stochastic processes Quantum groups Noncommutative differential geometry Quantum theory Stochastische Quantisierung (DE-588)4238900-8 gnd Quantengruppe (DE-588)4252437-4 gnd Nichtkommutative Differentialgeometrie (DE-588)4311174-9 gnd Quantentheorie (DE-588)4047992-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Quantentheorie Stochastic processes Quantum groups Noncommutative differential geometry Quantum theory Stochastische Quantisierung Quantengruppe Nichtkommutative Differentialgeometrie Stochastischer Prozess |
url | https://doi.org/10.1017/CBO9780511618529 |
work_keys_str_mv | AT sinhakalyanb quantumstochasticprocessesandnoncommutativegeometry AT goswamidebashish quantumstochasticprocessesandnoncommutativegeometry AT sinhakalyanb quantumstochasticprocessesnoncommutativegeometry AT goswamidebashish quantumstochasticprocessesnoncommutativegeometry |