Harmonic maps, loop groups, and integrable systems:
Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1997
|
Schriftenreihe: | London Mathematical Society student texts
38 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 194 pages) |
ISBN: | 9781139174848 |
DOI: | 10.1017/CBO9781139174848 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940965 | ||
003 | DE-604 | ||
005 | 20171120 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781139174848 |c Online |9 978-1-139-17484-8 | ||
024 | 7 | |a 10.1017/CBO9781139174848 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139174848 | ||
035 | |a (OCoLC)859642680 | ||
035 | |a (DE-599)BVBBV043940965 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-355 |a DE-92 | ||
082 | 0 | |a 514/.74 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Guest, Martin A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Harmonic maps, loop groups, and integrable systems |c Martin A. Guest |
246 | 1 | 3 | |a Harmonic Maps, Loop Groups, & Integrable Systems |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1997 | |
300 | |a 1 online resource (xiii, 194 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 38 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists | ||
650 | 4 | |a Harmonic maps | |
650 | 4 | |a Loops (Group theory) | |
650 | 4 | |a Differential equations | |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Abbildung |0 (DE-588)4023452-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Abbildung |0 (DE-588)4023452-6 |D s |
689 | 0 | 1 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-58085-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-58932-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139174848 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349934 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139174848 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139174848 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139174848 |l UBR01 |p ZDB-20-CBO |q UBR_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882104532992 |
---|---|
any_adam_object | |
author | Guest, Martin A. |
author_facet | Guest, Martin A. |
author_role | aut |
author_sort | Guest, Martin A. |
author_variant | m a g ma mag |
building | Verbundindex |
bvnumber | BV043940965 |
classification_rvk | SK 340 SK 350 SK 370 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139174848 (OCoLC)859642680 (DE-599)BVBBV043940965 |
dewey-full | 514/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.74 |
dewey-search | 514/.74 |
dewey-sort | 3514 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139174848 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03092nmm a2200565zcb4500</leader><controlfield tag="001">BV043940965</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171120 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139174848</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17484-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139174848</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139174848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859642680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940965</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.74</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guest, Martin A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic maps, loop groups, and integrable systems</subfield><subfield code="c">Martin A. Guest</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Harmonic Maps, Loop Groups, & Integrable Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 194 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">38</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loops (Group theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-58085-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-58932-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139174848</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349934</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139174848</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139174848</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139174848</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940965 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139174848 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349934 |
oclc_num | 859642680 |
open_access_boolean | |
owner | DE-12 DE-355 DE-BY-UBR DE-92 |
owner_facet | DE-12 DE-355 DE-BY-UBR DE-92 |
physical | 1 online resource (xiii, 194 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR_PDA_CBO_Kauf |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Guest, Martin A. Verfasser aut Harmonic maps, loop groups, and integrable systems Martin A. Guest Harmonic Maps, Loop Groups, & Integrable Systems Cambridge Cambridge University Press 1997 1 online resource (xiii, 194 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 38 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists Harmonic maps Loops (Group theory) Differential equations Integrables System (DE-588)4114032-1 gnd rswk-swf Harmonische Abbildung (DE-588)4023452-6 gnd rswk-swf Harmonische Abbildung (DE-588)4023452-6 s Integrables System (DE-588)4114032-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-58085-4 Erscheint auch als Druckausgabe 978-0-521-58932-1 https://doi.org/10.1017/CBO9781139174848 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Guest, Martin A. Harmonic maps, loop groups, and integrable systems Harmonic maps Loops (Group theory) Differential equations Integrables System (DE-588)4114032-1 gnd Harmonische Abbildung (DE-588)4023452-6 gnd |
subject_GND | (DE-588)4114032-1 (DE-588)4023452-6 |
title | Harmonic maps, loop groups, and integrable systems |
title_alt | Harmonic Maps, Loop Groups, & Integrable Systems |
title_auth | Harmonic maps, loop groups, and integrable systems |
title_exact_search | Harmonic maps, loop groups, and integrable systems |
title_full | Harmonic maps, loop groups, and integrable systems Martin A. Guest |
title_fullStr | Harmonic maps, loop groups, and integrable systems Martin A. Guest |
title_full_unstemmed | Harmonic maps, loop groups, and integrable systems Martin A. Guest |
title_short | Harmonic maps, loop groups, and integrable systems |
title_sort | harmonic maps loop groups and integrable systems |
topic | Harmonic maps Loops (Group theory) Differential equations Integrables System (DE-588)4114032-1 gnd Harmonische Abbildung (DE-588)4023452-6 gnd |
topic_facet | Harmonic maps Loops (Group theory) Differential equations Integrables System Harmonische Abbildung |
url | https://doi.org/10.1017/CBO9781139174848 |
work_keys_str_mv | AT guestmartina harmonicmapsloopgroupsandintegrablesystems AT guestmartina harmonicmapsloopgroupsintegrablesystems |