Nonlinear dispersive waves: asymptotic analysis and solitons
The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a b...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schriftenreihe: | Cambridge texts in applied mathematics
47 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 348 pages) |
ISBN: | 9780511998324 |
DOI: | 10.1017/CBO9780511998324 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940963 | ||
003 | DE-604 | ||
005 | 20170720 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780511998324 |c Online |9 978-0-511-99832-4 | ||
024 | 7 | |a 10.1017/CBO9780511998324 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511998324 | ||
035 | |a (OCoLC)852503997 | ||
035 | |a (DE-599)BVBBV043940963 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.15/5355 |2 23 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Ablowitz, Mark J. |d 1945- |e Verfasser |0 (DE-588)143611844 |4 aut | |
245 | 1 | 0 | |a Nonlinear dispersive waves |b asymptotic analysis and solitons |c Mark J. Ablowitz |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 online resource (xiv, 348 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics |v 47 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Machine generated contents note: Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index | |
520 | |a The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science | ||
650 | 4 | |a Wave equation | |
650 | 4 | |a Nonlinear waves | |
650 | 4 | |a Solitons | |
650 | 4 | |a Asymptotic expansions | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-01254-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-66410-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511998324 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349932 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511998324 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511998324 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882095095808 |
---|---|
any_adam_object | |
author | Ablowitz, Mark J. 1945- |
author_GND | (DE-588)143611844 |
author_facet | Ablowitz, Mark J. 1945- |
author_role | aut |
author_sort | Ablowitz, Mark J. 1945- |
author_variant | m j a mj mja |
building | Verbundindex |
bvnumber | BV043940963 |
classification_rvk | SK 540 SK 560 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index |
ctrlnum | (ZDB-20-CBO)CR9780511998324 (OCoLC)852503997 (DE-599)BVBBV043940963 |
dewey-full | 530.15/5355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/5355 |
dewey-search | 530.15/5355 |
dewey-sort | 3530.15 45355 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511998324 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03540nmm a2200481zcb4500</leader><controlfield tag="001">BV043940963</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170720 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511998324</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-99832-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511998324</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511998324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852503997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940963</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/5355</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ablowitz, Mark J.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143611844</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear dispersive waves</subfield><subfield code="b">asymptotic analysis and solitons</subfield><subfield code="c">Mark J. Ablowitz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 348 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">47</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solitons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic expansions</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-01254-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-66410-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511998324</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349932</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511998324</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511998324</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940963 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511998324 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349932 |
oclc_num | 852503997 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 348 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | Ablowitz, Mark J. 1945- Verfasser (DE-588)143611844 aut Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz Cambridge Cambridge University Press 2011 1 online resource (xiv, 348 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics 47 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine generated contents note: Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science Wave equation Nonlinear waves Solitons Asymptotic expansions Erscheint auch als Druckausgabe 978-1-107-01254-7 Erscheint auch als Druckausgabe 978-1-107-66410-4 https://doi.org/10.1017/CBO9780511998324 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ablowitz, Mark J. 1945- Nonlinear dispersive waves asymptotic analysis and solitons Machine generated contents note: Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index Wave equation Nonlinear waves Solitons Asymptotic expansions |
title | Nonlinear dispersive waves asymptotic analysis and solitons |
title_auth | Nonlinear dispersive waves asymptotic analysis and solitons |
title_exact_search | Nonlinear dispersive waves asymptotic analysis and solitons |
title_full | Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz |
title_fullStr | Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz |
title_full_unstemmed | Nonlinear dispersive waves asymptotic analysis and solitons Mark J. Ablowitz |
title_short | Nonlinear dispersive waves |
title_sort | nonlinear dispersive waves asymptotic analysis and solitons |
title_sub | asymptotic analysis and solitons |
topic | Wave equation Nonlinear waves Solitons Asymptotic expansions |
topic_facet | Wave equation Nonlinear waves Solitons Asymptotic expansions |
url | https://doi.org/10.1017/CBO9780511998324 |
work_keys_str_mv | AT ablowitzmarkj nonlineardispersivewavesasymptoticanalysisandsolitons |