Nonlinear systems:
The theories of bifurcation, chaos and fractals as well as equilibrium, stability and nonlinear oscillations, are part of the theory of the evolution of solutions of nonlinear equations. A wide range of mathematical tools and ideas are drawn together in the study of these solutions, and the results...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1992
|
Schriftenreihe: | Cambridge texts in applied mathematics
10 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The theories of bifurcation, chaos and fractals as well as equilibrium, stability and nonlinear oscillations, are part of the theory of the evolution of solutions of nonlinear equations. A wide range of mathematical tools and ideas are drawn together in the study of these solutions, and the results applied to diverse and countless problems in the natural and social sciences, even philosophy. The text evolves from courses given by the author in the UK and the United States. It introduces the mathematical properties of nonlinear systems, mostly difference and differential equations, as an integrated theory, rather than presenting isolated fashionable topics. Topics are discussed in as concrete a way as possible and worked examples and problems are used to explain, motivate and illustrate the general principles. The essence of these principles, rather than proof or rigour, is emphasized. More advanced parts of the text are denoted by asterisks, and the mathematical prerequisites are limited to knowledge of linear algebra and advanced calculus, thus making it ideally suited to both senior undergraduates and postgraduates from physics, engineering, chemistry, meteorology etc. as well as mathematics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 317 pages) |
ISBN: | 9781139172455 |
DOI: | 10.1017/CBO9781139172455 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940943 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781139172455 |c Online |9 978-1-139-17245-5 | ||
024 | 7 | |a 10.1017/CBO9781139172455 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139172455 | ||
035 | |a (OCoLC)859644140 | ||
035 | |a (DE-599)BVBBV043940943 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.355 |2 20 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
084 | |a ZQ 5220 |0 (DE-625)158118: |2 rvk | ||
100 | 1 | |a Drazin, P. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear systems |c P.G. Drazin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1992 | |
300 | |a 1 online resource (xiii, 317 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge texts in applied mathematics |v 10 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The theories of bifurcation, chaos and fractals as well as equilibrium, stability and nonlinear oscillations, are part of the theory of the evolution of solutions of nonlinear equations. A wide range of mathematical tools and ideas are drawn together in the study of these solutions, and the results applied to diverse and countless problems in the natural and social sciences, even philosophy. The text evolves from courses given by the author in the UK and the United States. It introduces the mathematical properties of nonlinear systems, mostly difference and differential equations, as an integrated theory, rather than presenting isolated fashionable topics. Topics are discussed in as concrete a way as possible and worked examples and problems are used to explain, motivate and illustrate the general principles. The essence of these principles, rather than proof or rigour, is emphasized. More advanced parts of the text are denoted by asterisks, and the mathematical prerequisites are limited to knowledge of linear algebra and advanced calculus, thus making it ideally suited to both senior undergraduates and postgraduates from physics, engineering, chemistry, meteorology etc. as well as mathematics | ||
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 4 | |a Chaotic behavior in systems | |
650 | 0 | 7 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares System |0 (DE-588)4042110-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-40489-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-40668-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139172455 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349912 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139172455 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172455 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882056298496 |
---|---|
any_adam_object | |
author | Drazin, P. G. |
author_facet | Drazin, P. G. |
author_role | aut |
author_sort | Drazin, P. G. |
author_variant | p g d pg pgd |
building | Verbundindex |
bvnumber | BV043940943 |
classification_rvk | SK 520 SK 540 SK 820 UG 3900 ZQ 5220 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139172455 (OCoLC)859644140 (DE-599)BVBBV043940943 |
dewey-full | 515/.355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.355 |
dewey-search | 515/.355 |
dewey-sort | 3515 3355 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
doi_str_mv | 10.1017/CBO9781139172455 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03580nmm a2200589zcb4500</leader><controlfield tag="001">BV043940943</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172455</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17245-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139172455</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139172455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859644140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940943</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.355</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 5220</subfield><subfield code="0">(DE-625)158118:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drazin, P. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear systems</subfield><subfield code="c">P.G. Drazin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 317 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theories of bifurcation, chaos and fractals as well as equilibrium, stability and nonlinear oscillations, are part of the theory of the evolution of solutions of nonlinear equations. A wide range of mathematical tools and ideas are drawn together in the study of these solutions, and the results applied to diverse and countless problems in the natural and social sciences, even philosophy. The text evolves from courses given by the author in the UK and the United States. It introduces the mathematical properties of nonlinear systems, mostly difference and differential equations, as an integrated theory, rather than presenting isolated fashionable topics. Topics are discussed in as concrete a way as possible and worked examples and problems are used to explain, motivate and illustrate the general principles. The essence of these principles, rather than proof or rigour, is emphasized. More advanced parts of the text are denoted by asterisks, and the mathematical prerequisites are limited to knowledge of linear algebra and advanced calculus, thus making it ideally suited to both senior undergraduates and postgraduates from physics, engineering, chemistry, meteorology etc. as well as mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-40489-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-40668-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139172455</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349912</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172455</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172455</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940943 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139172455 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349912 |
oclc_num | 859644140 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 317 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge texts in applied mathematics |
spelling | Drazin, P. G. Verfasser aut Nonlinear systems P.G. Drazin Cambridge Cambridge University Press 1992 1 online resource (xiii, 317 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge texts in applied mathematics 10 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The theories of bifurcation, chaos and fractals as well as equilibrium, stability and nonlinear oscillations, are part of the theory of the evolution of solutions of nonlinear equations. A wide range of mathematical tools and ideas are drawn together in the study of these solutions, and the results applied to diverse and countless problems in the natural and social sciences, even philosophy. The text evolves from courses given by the author in the UK and the United States. It introduces the mathematical properties of nonlinear systems, mostly difference and differential equations, as an integrated theory, rather than presenting isolated fashionable topics. Topics are discussed in as concrete a way as possible and worked examples and problems are used to explain, motivate and illustrate the general principles. The essence of these principles, rather than proof or rigour, is emphasized. More advanced parts of the text are denoted by asterisks, and the mathematical prerequisites are limited to knowledge of linear algebra and advanced calculus, thus making it ideally suited to both senior undergraduates and postgraduates from physics, engineering, chemistry, meteorology etc. as well as mathematics Nonlinear theories Differential equations, Nonlinear Chaotic behavior in systems Nichtlineares dynamisches System (DE-588)4126142-2 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 s 1\p DE-604 Nichtlineares dynamisches System (DE-588)4126142-2 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-40489-1 Erscheint auch als Druckausgabe 978-0-521-40668-0 https://doi.org/10.1017/CBO9781139172455 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Drazin, P. G. Nonlinear systems Nonlinear theories Differential equations, Nonlinear Chaotic behavior in systems Nichtlineares dynamisches System (DE-588)4126142-2 gnd Nichtlineares System (DE-588)4042110-7 gnd |
subject_GND | (DE-588)4126142-2 (DE-588)4042110-7 |
title | Nonlinear systems |
title_auth | Nonlinear systems |
title_exact_search | Nonlinear systems |
title_full | Nonlinear systems P.G. Drazin |
title_fullStr | Nonlinear systems P.G. Drazin |
title_full_unstemmed | Nonlinear systems P.G. Drazin |
title_short | Nonlinear systems |
title_sort | nonlinear systems |
topic | Nonlinear theories Differential equations, Nonlinear Chaotic behavior in systems Nichtlineares dynamisches System (DE-588)4126142-2 gnd Nichtlineares System (DE-588)4042110-7 gnd |
topic_facet | Nonlinear theories Differential equations, Nonlinear Chaotic behavior in systems Nichtlineares dynamisches System Nichtlineares System |
url | https://doi.org/10.1017/CBO9781139172455 |
work_keys_str_mv | AT drazinpg nonlinearsystems |