Proofs and confirmations: the story of the alternating sign matrix conjecture
This is an introduction to recent developments in algebraic combinatorics and an illustration of how research in mathematics actually progresses. The author recounts the story of the search for and discovery of a proof of a formula conjectured in the late 1970s: the number of n x n alternating sign...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1999
|
Schriftenreihe: | Spectrum
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This is an introduction to recent developments in algebraic combinatorics and an illustration of how research in mathematics actually progresses. The author recounts the story of the search for and discovery of a proof of a formula conjectured in the late 1970s: the number of n x n alternating sign matrices, objects that generalize permutation matrices. While apparent that the conjecture must be true, the proof was elusive. Researchers became drawn to this problem, making connections to aspects of invariant theory, to symmetric functions, to hypergeometric and basic hypergeometric series, and, finally, to the six-vertex model of statistical mechanics. All these threads are brought together in Zeilberger's 1996 proof of the original conjecture. The book is accessible to anyone with a knowledge of linear algebra. Students will learn what mathematicians actually do in an interesting and new area of mathematics, and even researchers in combinatorics will find something new here |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 274 pages) |
ISBN: | 9780511613449 |
DOI: | 10.1017/CBO9780511613449 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940939 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1999 |||| o||u| ||||||eng d | ||
020 | |a 9780511613449 |c Online |9 978-0-511-61344-9 | ||
024 | 7 | |a 10.1017/CBO9780511613449 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511613449 | ||
035 | |a (OCoLC)859643312 | ||
035 | |a (DE-599)BVBBV043940939 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.9/434 |2 21 | |
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
100 | 1 | |a Bressoud, David M. |d 1950- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Proofs and confirmations |b the story of the alternating sign matrix conjecture |c David M. Bressoud |
246 | 1 | 3 | |a Proofs & Confirmations |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1999 | |
300 | |a 1 online resource (xv, 274 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Spectrum | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This is an introduction to recent developments in algebraic combinatorics and an illustration of how research in mathematics actually progresses. The author recounts the story of the search for and discovery of a proof of a formula conjectured in the late 1970s: the number of n x n alternating sign matrices, objects that generalize permutation matrices. While apparent that the conjecture must be true, the proof was elusive. Researchers became drawn to this problem, making connections to aspects of invariant theory, to symmetric functions, to hypergeometric and basic hypergeometric series, and, finally, to the six-vertex model of statistical mechanics. All these threads are brought together in Zeilberger's 1996 proof of the original conjecture. The book is accessible to anyone with a knowledge of linear algebra. Students will learn what mathematicians actually do in an interesting and new area of mathematics, and even researchers in combinatorics will find something new here | ||
650 | 4 | |a Matrices | |
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Statistical mechanics | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-66170-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-66646-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511613449 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349908 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511613449 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511613449 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882031132672 |
---|---|
any_adam_object | |
author | Bressoud, David M. 1950- |
author_facet | Bressoud, David M. 1950- |
author_role | aut |
author_sort | Bressoud, David M. 1950- |
author_variant | d m b dm dmb |
building | Verbundindex |
bvnumber | BV043940939 |
classification_rvk | SK 170 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511613449 (OCoLC)859643312 (DE-599)BVBBV043940939 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511613449 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02717nmm a2200457zc 4500</leader><controlfield tag="001">BV043940939</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511613449</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61344-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511613449</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511613449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859643312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940939</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bressoud, David M.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proofs and confirmations</subfield><subfield code="b">the story of the alternating sign matrix conjecture</subfield><subfield code="c">David M. Bressoud</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proofs & Confirmations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 274 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Spectrum</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is an introduction to recent developments in algebraic combinatorics and an illustration of how research in mathematics actually progresses. The author recounts the story of the search for and discovery of a proof of a formula conjectured in the late 1970s: the number of n x n alternating sign matrices, objects that generalize permutation matrices. While apparent that the conjecture must be true, the proof was elusive. Researchers became drawn to this problem, making connections to aspects of invariant theory, to symmetric functions, to hypergeometric and basic hypergeometric series, and, finally, to the six-vertex model of statistical mechanics. All these threads are brought together in Zeilberger's 1996 proof of the original conjecture. The book is accessible to anyone with a knowledge of linear algebra. Students will learn what mathematicians actually do in an interesting and new area of mathematics, and even researchers in combinatorics will find something new here</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical mechanics</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-66170-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-66646-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511613449</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349908</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511613449</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511613449</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940939 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511613449 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349908 |
oclc_num | 859643312 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 274 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Spectrum |
spelling | Bressoud, David M. 1950- Verfasser aut Proofs and confirmations the story of the alternating sign matrix conjecture David M. Bressoud Proofs & Confirmations Cambridge Cambridge University Press 1999 1 online resource (xv, 274 pages) txt rdacontent c rdamedia cr rdacarrier Spectrum Title from publisher's bibliographic system (viewed on 05 Oct 2015) This is an introduction to recent developments in algebraic combinatorics and an illustration of how research in mathematics actually progresses. The author recounts the story of the search for and discovery of a proof of a formula conjectured in the late 1970s: the number of n x n alternating sign matrices, objects that generalize permutation matrices. While apparent that the conjecture must be true, the proof was elusive. Researchers became drawn to this problem, making connections to aspects of invariant theory, to symmetric functions, to hypergeometric and basic hypergeometric series, and, finally, to the six-vertex model of statistical mechanics. All these threads are brought together in Zeilberger's 1996 proof of the original conjecture. The book is accessible to anyone with a knowledge of linear algebra. Students will learn what mathematicians actually do in an interesting and new area of mathematics, and even researchers in combinatorics will find something new here Matrices Combinatorial analysis Statistical mechanics Erscheint auch als Druckausgabe 978-0-521-66170-6 Erscheint auch als Druckausgabe 978-0-521-66646-6 https://doi.org/10.1017/CBO9780511613449 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bressoud, David M. 1950- Proofs and confirmations the story of the alternating sign matrix conjecture Matrices Combinatorial analysis Statistical mechanics |
title | Proofs and confirmations the story of the alternating sign matrix conjecture |
title_alt | Proofs & Confirmations |
title_auth | Proofs and confirmations the story of the alternating sign matrix conjecture |
title_exact_search | Proofs and confirmations the story of the alternating sign matrix conjecture |
title_full | Proofs and confirmations the story of the alternating sign matrix conjecture David M. Bressoud |
title_fullStr | Proofs and confirmations the story of the alternating sign matrix conjecture David M. Bressoud |
title_full_unstemmed | Proofs and confirmations the story of the alternating sign matrix conjecture David M. Bressoud |
title_short | Proofs and confirmations |
title_sort | proofs and confirmations the story of the alternating sign matrix conjecture |
title_sub | the story of the alternating sign matrix conjecture |
topic | Matrices Combinatorial analysis Statistical mechanics |
topic_facet | Matrices Combinatorial analysis Statistical mechanics |
url | https://doi.org/10.1017/CBO9780511613449 |
work_keys_str_mv | AT bressouddavidm proofsandconfirmationsthestoryofthealternatingsignmatrixconjecture AT bressouddavidm proofsconfirmations |