Nonparametric estimation under shape constraints: estimators, algorithms, and asymptotics
This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restric...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics
38 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 416 pages) |
ISBN: | 9781139020893 |
DOI: | 10.1017/CBO9781139020893 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940934 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781139020893 |c Online |9 978-1-139-02089-3 | ||
024 | 7 | |a 10.1017/CBO9781139020893 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139020893 | ||
035 | |a (OCoLC)907964137 | ||
035 | |a (DE-599)BVBBV043940934 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.5/4 |2 23 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Groeneboom, P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonparametric estimation under shape constraints |b estimators, algorithms, and asymptotics |c Piet Groeneboom, Delft University of Technology, Geurt Jongbloed, Delft University of Technology |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 online resource (xi, 416 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge series on statistical and probabilistic mathematics |v 38 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature | ||
650 | 4 | |a Nonparametric statistics | |
650 | 4 | |a Multivariate analysis | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Estimation theory | |
700 | 1 | |a Jongbloed, Geurt |d 1968- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-86401-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139020893 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349903 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139020893 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139020893 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176882022744064 |
---|---|
any_adam_object | |
author | Groeneboom, P. |
author_facet | Groeneboom, P. |
author_role | aut |
author_sort | Groeneboom, P. |
author_variant | p g pg |
building | Verbundindex |
bvnumber | BV043940934 |
classification_rvk | SK 830 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139020893 (OCoLC)907964137 (DE-599)BVBBV043940934 |
dewey-full | 519.5/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/4 |
dewey-search | 519.5/4 |
dewey-sort | 3519.5 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139020893 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02758nmm a2200457zcb4500</leader><controlfield tag="001">BV043940934</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139020893</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-02089-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139020893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139020893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907964137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940934</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Groeneboom, P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric estimation under shape constraints</subfield><subfield code="b">estimators, algorithms, and asymptotics</subfield><subfield code="c">Piet Groeneboom, Delft University of Technology, Geurt Jongbloed, Delft University of Technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 416 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">38</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonparametric statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jongbloed, Geurt</subfield><subfield code="d">1968-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86401-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139020893</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349903</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139020893</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139020893</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940934 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139020893 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349903 |
oclc_num | 907964137 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 416 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge series on statistical and probabilistic mathematics |
spelling | Groeneboom, P. Verfasser aut Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics Piet Groeneboom, Delft University of Technology, Geurt Jongbloed, Delft University of Technology Cambridge Cambridge University Press 2014 1 online resource (xi, 416 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge series on statistical and probabilistic mathematics 38 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature Nonparametric statistics Multivariate analysis Mathematical statistics Estimation theory Jongbloed, Geurt 1968- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-86401-5 https://doi.org/10.1017/CBO9781139020893 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Groeneboom, P. Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics Nonparametric statistics Multivariate analysis Mathematical statistics Estimation theory |
title | Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics |
title_auth | Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics |
title_exact_search | Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics |
title_full | Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics Piet Groeneboom, Delft University of Technology, Geurt Jongbloed, Delft University of Technology |
title_fullStr | Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics Piet Groeneboom, Delft University of Technology, Geurt Jongbloed, Delft University of Technology |
title_full_unstemmed | Nonparametric estimation under shape constraints estimators, algorithms, and asymptotics Piet Groeneboom, Delft University of Technology, Geurt Jongbloed, Delft University of Technology |
title_short | Nonparametric estimation under shape constraints |
title_sort | nonparametric estimation under shape constraints estimators algorithms and asymptotics |
title_sub | estimators, algorithms, and asymptotics |
topic | Nonparametric statistics Multivariate analysis Mathematical statistics Estimation theory |
topic_facet | Nonparametric statistics Multivariate analysis Mathematical statistics Estimation theory |
url | https://doi.org/10.1017/CBO9781139020893 |
work_keys_str_mv | AT groeneboomp nonparametricestimationundershapeconstraintsestimatorsalgorithmsandasymptotics AT jongbloedgeurt nonparametricestimationundershapeconstraintsestimatorsalgorithmsandasymptotics |