Mathematical aspects of quantum field theory:
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | Cambridge studies in advanced mathematics
127 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations |
Beschreibung: | 1 online resource (xiii, 298 Seiten) |
ISBN: | 9780511760532 |
DOI: | 10.1017/CBO9780511760532 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940847 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9780511760532 |c Online |9 978-0-511-76053-2 | ||
024 | 7 | |a 10.1017/CBO9780511760532 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511760532 | ||
035 | |a (OCoLC)839031353 | ||
035 | |a (DE-599)BVBBV043940847 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 530.14/30151 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a UO 4020 |0 (DE-625)146239: |2 rvk | ||
100 | 1 | |a Faria, Edson de |e Verfasser |0 (DE-588)136734782 |4 aut | |
245 | 1 | 0 | |a Mathematical aspects of quantum field theory |c Edson de Faria, Welington de Melo |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (xiii, 298 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 127 | |
505 | 8 | |a Machine generated contents note: Foreword Dennis Sullivan; Preface; 1. Classical mechanics; 2. Quantum mechanics; 3. Relativity, the Lorentz group and Dirac's equation; 4. Fiber bundles, connections and representations; 5. Classical field theory; 6. Quantization of classical fields; 7. Perturbative quantum field theory; 8. Renormalization; 9. The standard model; Appendix A. Hilbert spaces and operators; Appendix B. C* algebras and spectral theory; Bibliography; Index | |
520 | |a Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantum field theory / Mathematics | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 1 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Melo, Welington de |d 1946-2016 |e Sonstige |0 (DE-588)110394267 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-11577-3 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 127 |w (DE-604)BV044781283 |9 127 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511760532 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349817 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511760532 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511760532 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511760532 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881843437568 |
---|---|
any_adam_object | |
author | Faria, Edson de |
author_GND | (DE-588)136734782 (DE-588)110394267 |
author_facet | Faria, Edson de |
author_role | aut |
author_sort | Faria, Edson de |
author_variant | e d f ed edf |
building | Verbundindex |
bvnumber | BV043940847 |
classification_rvk | SK 950 UO 4000 UO 4020 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: Foreword Dennis Sullivan; Preface; 1. Classical mechanics; 2. Quantum mechanics; 3. Relativity, the Lorentz group and Dirac's equation; 4. Fiber bundles, connections and representations; 5. Classical field theory; 6. Quantization of classical fields; 7. Perturbative quantum field theory; 8. Renormalization; 9. The standard model; Appendix A. Hilbert spaces and operators; Appendix B. C* algebras and spectral theory; Bibliography; Index |
ctrlnum | (ZDB-20-CBO)CR9780511760532 (OCoLC)839031353 (DE-599)BVBBV043940847 |
dewey-full | 530.14/30151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/30151 |
dewey-search | 530.14/30151 |
dewey-sort | 3530.14 530151 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511760532 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03951nmm a2200601zcb4500</leader><controlfield tag="001">BV043940847</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511760532</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-76053-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511760532</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511760532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839031353</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940847</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/30151</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4020</subfield><subfield code="0">(DE-625)146239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faria, Edson de</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136734782</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical aspects of quantum field theory</subfield><subfield code="c">Edson de Faria, Welington de Melo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 298 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">127</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: Foreword Dennis Sullivan; Preface; 1. Classical mechanics; 2. Quantum mechanics; 3. Relativity, the Lorentz group and Dirac's equation; 4. Fiber bundles, connections and representations; 5. Classical field theory; 6. Quantization of classical fields; 7. Perturbative quantum field theory; 8. Renormalization; 9. The standard model; Appendix A. Hilbert spaces and operators; Appendix B. C* algebras and spectral theory; Bibliography; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory / Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melo, Welington de</subfield><subfield code="d">1946-2016</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)110394267</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-11577-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">127</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">127</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511760532</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349817</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511760532</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511760532</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511760532</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940847 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511760532 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349817 |
oclc_num | 839031353 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (xiii, 298 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Faria, Edson de Verfasser (DE-588)136734782 aut Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo Cambridge Cambridge University Press 2010 1 online resource (xiii, 298 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 127 Machine generated contents note: Foreword Dennis Sullivan; Preface; 1. Classical mechanics; 2. Quantum mechanics; 3. Relativity, the Lorentz group and Dirac's equation; 4. Fiber bundles, connections and representations; 5. Classical field theory; 6. Quantization of classical fields; 7. Perturbative quantum field theory; 8. Renormalization; 9. The standard model; Appendix A. Hilbert spaces and operators; Appendix B. C* algebras and spectral theory; Bibliography; Index Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations Mathematik Quantum field theory / Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Mathematische Physik (DE-588)4037952-8 s DE-604 Mathematische Methode (DE-588)4155620-3 s 1\p DE-604 Melo, Welington de 1946-2016 Sonstige (DE-588)110394267 oth Erscheint auch als Druck-Ausgabe 978-0-521-11577-3 Cambridge studies in advanced mathematics 127 (DE-604)BV044781283 127 https://doi.org/10.1017/CBO9780511760532 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Faria, Edson de Mathematical aspects of quantum field theory Cambridge studies in advanced mathematics Machine generated contents note: Foreword Dennis Sullivan; Preface; 1. Classical mechanics; 2. Quantum mechanics; 3. Relativity, the Lorentz group and Dirac's equation; 4. Fiber bundles, connections and representations; 5. Classical field theory; 6. Quantization of classical fields; 7. Perturbative quantum field theory; 8. Renormalization; 9. The standard model; Appendix A. Hilbert spaces and operators; Appendix B. C* algebras and spectral theory; Bibliography; Index Mathematik Quantum field theory / Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd Mathematische Physik (DE-588)4037952-8 gnd Mathematische Methode (DE-588)4155620-3 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4037952-8 (DE-588)4155620-3 |
title | Mathematical aspects of quantum field theory |
title_auth | Mathematical aspects of quantum field theory |
title_exact_search | Mathematical aspects of quantum field theory |
title_full | Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo |
title_fullStr | Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo |
title_full_unstemmed | Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo |
title_short | Mathematical aspects of quantum field theory |
title_sort | mathematical aspects of quantum field theory |
topic | Mathematik Quantum field theory / Mathematics Quantenfeldtheorie (DE-588)4047984-5 gnd Mathematische Physik (DE-588)4037952-8 gnd Mathematische Methode (DE-588)4155620-3 gnd |
topic_facet | Mathematik Quantum field theory / Mathematics Quantenfeldtheorie Mathematische Physik Mathematische Methode |
url | https://doi.org/10.1017/CBO9780511760532 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT fariaedsonde mathematicalaspectsofquantumfieldtheory AT melowelingtonde mathematicalaspectsofquantumfieldtheory |