Logic, induction and sets:
This is an introduction to logic and the axiomatization of set theory from a unique standpoint. Philosophical considerations, which are often ignored or treated casually, are here given careful consideration, and furthermore the author places the notion of inductively defined sets (recursive datatyp...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | London Mathematical Society student texts
56 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | This is an introduction to logic and the axiomatization of set theory from a unique standpoint. Philosophical considerations, which are often ignored or treated casually, are here given careful consideration, and furthermore the author places the notion of inductively defined sets (recursive datatypes) at the centre of his exposition resulting in a treatment of well established topics that is fresh and insightful. The presentation is engaging, but always great care is taken to illustrate difficult points. Understanding is also aided by the inclusion of many exercises. Little previous knowledge of logic is required of the reader, and only a background of standard undergraduate mathematics is assumed |
Beschreibung: | 1 Online-Ressource (x, 234 Seiten) |
ISBN: | 9780511810282 |
DOI: | 10.1017/CBO9780511810282 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940805 | ||
003 | DE-604 | ||
005 | 20190529 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511810282 |c Online |9 978-0-511-81028-2 | ||
024 | 7 | |a 10.1017/CBO9780511810282 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511810282 | ||
035 | |a (OCoLC)859644744 | ||
035 | |a (DE-599)BVBBV043940805 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 511.3/22 |2 21 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
100 | 1 | |a Forster, Thomas |d 1948- |e Verfasser |0 (DE-588)143781316 |4 aut | |
245 | 1 | 0 | |a Logic, induction and sets |c Thomas Forster |
246 | 1 | 3 | |a Logic, Induction & Sets |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 Online-Ressource (x, 234 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 56 | |
520 | |a This is an introduction to logic and the axiomatization of set theory from a unique standpoint. Philosophical considerations, which are often ignored or treated casually, are here given careful consideration, and furthermore the author places the notion of inductively defined sets (recursive datatypes) at the centre of his exposition resulting in a treatment of well established topics that is fresh and insightful. The presentation is engaging, but always great care is taken to illustrate difficult points. Understanding is also aided by the inclusion of many exercises. Little previous knowledge of logic is required of the reader, and only a background of standard undergraduate mathematics is assumed | ||
650 | 4 | |a Axiomatic set theory | |
650 | 0 | 7 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |t 978-0-521-82621-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |t 978-0-521-53361-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511810282 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349775 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511810282 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511810282 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511810282 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881752211456 |
---|---|
any_adam_object | |
author | Forster, Thomas 1948- |
author_GND | (DE-588)143781316 |
author_facet | Forster, Thomas 1948- |
author_role | aut |
author_sort | Forster, Thomas 1948- |
author_variant | t f tf |
building | Verbundindex |
bvnumber | BV043940805 |
classification_rvk | SK 130 SK 150 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511810282 (OCoLC)859644744 (DE-599)BVBBV043940805 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511810282 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02648nmm a2200481zcb4500</leader><controlfield tag="001">BV043940805</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190529 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511810282</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-81028-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511810282</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511810282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859644744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940805</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Forster, Thomas</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143781316</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Logic, induction and sets</subfield><subfield code="c">Thomas Forster</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Logic, Induction & Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 234 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">56</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is an introduction to logic and the axiomatization of set theory from a unique standpoint. Philosophical considerations, which are often ignored or treated casually, are here given careful consideration, and furthermore the author places the notion of inductively defined sets (recursive datatypes) at the centre of his exposition resulting in a treatment of well established topics that is fresh and insightful. The presentation is engaging, but always great care is taken to illustrate difficult points. Understanding is also aided by the inclusion of many exercises. Little previous knowledge of logic is required of the reader, and only a background of standard undergraduate mathematics is assumed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axiomatic set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="t">978-0-521-82621-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="t">978-0-521-53361-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511810282</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349775</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511810282</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511810282</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511810282</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940805 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511810282 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349775 |
oclc_num | 859644744 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (x, 234 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Forster, Thomas 1948- Verfasser (DE-588)143781316 aut Logic, induction and sets Thomas Forster Logic, Induction & Sets Cambridge Cambridge University Press 2003 1 Online-Ressource (x, 234 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 56 This is an introduction to logic and the axiomatization of set theory from a unique standpoint. Philosophical considerations, which are often ignored or treated casually, are here given careful consideration, and furthermore the author places the notion of inductively defined sets (recursive datatypes) at the centre of his exposition resulting in a treatment of well established topics that is fresh and insightful. The presentation is engaging, but always great care is taken to illustrate difficult points. Understanding is also aided by the inclusion of many exercises. Little previous knowledge of logic is required of the reader, and only a background of standard undergraduate mathematics is assumed Axiomatic set theory Axiomatische Mengenlehre (DE-588)4143743-3 gnd rswk-swf Axiomatische Mengenlehre (DE-588)4143743-3 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-82621-1 Erscheint auch als Druck-Ausgabe 978-0-521-53361-4 https://doi.org/10.1017/CBO9780511810282 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Forster, Thomas 1948- Logic, induction and sets Axiomatic set theory Axiomatische Mengenlehre (DE-588)4143743-3 gnd |
subject_GND | (DE-588)4143743-3 |
title | Logic, induction and sets |
title_alt | Logic, Induction & Sets |
title_auth | Logic, induction and sets |
title_exact_search | Logic, induction and sets |
title_full | Logic, induction and sets Thomas Forster |
title_fullStr | Logic, induction and sets Thomas Forster |
title_full_unstemmed | Logic, induction and sets Thomas Forster |
title_short | Logic, induction and sets |
title_sort | logic induction and sets |
topic | Axiomatic set theory Axiomatische Mengenlehre (DE-588)4143743-3 gnd |
topic_facet | Axiomatic set theory Axiomatische Mengenlehre |
url | https://doi.org/10.1017/CBO9780511810282 |
work_keys_str_mv | AT forsterthomas logicinductionandsets AT forsterthomas logicinductionsets |