Hilbert space: compact operators and the trace theorem
Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everyth...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1993
|
Schriftenreihe: | London Mathematical Society student texts
27 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 131 pages) |
ISBN: | 9781139172592 |
DOI: | 10.1017/CBO9781139172592 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940766 | ||
003 | DE-604 | ||
005 | 20191023 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781139172592 |c Online |9 978-1-139-17259-2 | ||
024 | 7 | |a 10.1017/CBO9781139172592 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139172592 | ||
035 | |a (OCoLC)967678740 | ||
035 | |a (DE-599)BVBBV043940766 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.733 |2 20 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Retherford, J. R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hilbert space |b compact operators and the trace theorem |c J.R. Retherford |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1993 | |
300 | |a 1 online resource (xii, 131 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 27 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space | ||
650 | 4 | |a Hilbert space | |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-41884-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-42933-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139172592 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349736 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139172592 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172592 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139172592 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881680908288 |
---|---|
any_adam_object | |
author | Retherford, J. R. |
author_facet | Retherford, J. R. |
author_role | aut |
author_sort | Retherford, J. R. |
author_variant | j r r jr jrr |
building | Verbundindex |
bvnumber | BV043940766 |
classification_rvk | SK 600 SK 620 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139172592 (OCoLC)967678740 (DE-599)BVBBV043940766 |
dewey-full | 515/.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.733 |
dewey-search | 515/.733 |
dewey-sort | 3515 3733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139172592 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02680nmm a2200493zcb4500</leader><controlfield tag="001">BV043940766</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191023 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172592</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17259-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139172592</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139172592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940766</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.733</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Retherford, J. R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert space</subfield><subfield code="b">compact operators and the trace theorem</subfield><subfield code="c">J.R. Retherford</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 131 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-41884-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-42933-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139172592</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349736</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172592</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172592</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139172592</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940766 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139172592 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349736 |
oclc_num | 967678740 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 online resource (xii, 131 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Retherford, J. R. Verfasser aut Hilbert space compact operators and the trace theorem J.R. Retherford Cambridge Cambridge University Press 1993 1 online resource (xii, 131 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 27 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space Hilbert space Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-41884-3 Erscheint auch als Druck-Ausgabe 978-0-521-42933-7 https://doi.org/10.1017/CBO9781139172592 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Retherford, J. R. Hilbert space compact operators and the trace theorem Hilbert space Hilbert-Raum (DE-588)4159850-7 gnd |
subject_GND | (DE-588)4159850-7 |
title | Hilbert space compact operators and the trace theorem |
title_auth | Hilbert space compact operators and the trace theorem |
title_exact_search | Hilbert space compact operators and the trace theorem |
title_full | Hilbert space compact operators and the trace theorem J.R. Retherford |
title_fullStr | Hilbert space compact operators and the trace theorem J.R. Retherford |
title_full_unstemmed | Hilbert space compact operators and the trace theorem J.R. Retherford |
title_short | Hilbert space |
title_sort | hilbert space compact operators and the trace theorem |
title_sub | compact operators and the trace theorem |
topic | Hilbert space Hilbert-Raum (DE-588)4159850-7 gnd |
topic_facet | Hilbert space Hilbert-Raum |
url | https://doi.org/10.1017/CBO9781139172592 |
work_keys_str_mv | AT retherfordjr hilbertspacecompactoperatorsandthetracetheorem |