The algorithmic resolution of diophantine equations:
Beginning with a brief introduction to algorithms and diophantine equations, this volume aims to provide a coherent account of the methods used to find all the solutions to certain diophantine equations, particularly those procedures which have been developed for use on a computer. The study is divi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | London Mathematical Society student texts
41 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Beginning with a brief introduction to algorithms and diophantine equations, this volume aims to provide a coherent account of the methods used to find all the solutions to certain diophantine equations, particularly those procedures which have been developed for use on a computer. The study is divided into three parts, the emphasis throughout being on examining approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems which can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, mainly focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers, with a basic knowledge of number theory, who are interested in solving diophantine equations using computational methods |
Beschreibung: | 1 Online-Ressource (xvi, 243 Seiten) |
ISBN: | 9781107359994 |
DOI: | 10.1017/CBO9781107359994 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940760 | ||
003 | DE-604 | ||
005 | 20191024 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781107359994 |c Online |9 978-1-107-35999-4 | ||
024 | 7 | |a 10.1017/CBO9781107359994 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107359994 | ||
035 | |a (OCoLC)907964262 | ||
035 | |a (DE-599)BVBBV043940760 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.72 |2 21 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Smart, Nigel P. |d 1967- |e Verfasser |0 (DE-588)173244815 |4 aut | |
245 | 1 | 0 | |a The algorithmic resolution of diophantine equations |c N.P. Smart |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 Online-Ressource (xvi, 243 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 41 | |
520 | |a Beginning with a brief introduction to algorithms and diophantine equations, this volume aims to provide a coherent account of the methods used to find all the solutions to certain diophantine equations, particularly those procedures which have been developed for use on a computer. The study is divided into three parts, the emphasis throughout being on examining approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems which can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, mainly focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers, with a basic knowledge of number theory, who are interested in solving diophantine equations using computational methods | ||
650 | 4 | |a Diophantine equations | |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-64156-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-64633-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107359994 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349730 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107359994 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107359994 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107359994 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881668325376 |
---|---|
any_adam_object | |
author | Smart, Nigel P. 1967- |
author_GND | (DE-588)173244815 |
author_facet | Smart, Nigel P. 1967- |
author_role | aut |
author_sort | Smart, Nigel P. 1967- |
author_variant | n p s np nps |
building | Verbundindex |
bvnumber | BV043940760 |
classification_rvk | SK 180 SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107359994 (OCoLC)907964262 (DE-599)BVBBV043940760 |
dewey-full | 512/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.72 |
dewey-search | 512/.72 |
dewey-sort | 3512 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107359994 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03175nmm a2200505zcb4500</leader><controlfield tag="001">BV043940760</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191024 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107359994</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-35999-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107359994</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107359994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907964262</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940760</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smart, Nigel P.</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173244815</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The algorithmic resolution of diophantine equations</subfield><subfield code="c">N.P. Smart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 243 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">41</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Beginning with a brief introduction to algorithms and diophantine equations, this volume aims to provide a coherent account of the methods used to find all the solutions to certain diophantine equations, particularly those procedures which have been developed for use on a computer. The study is divided into three parts, the emphasis throughout being on examining approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems which can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, mainly focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers, with a basic knowledge of number theory, who are interested in solving diophantine equations using computational methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diophantine equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-64156-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-64633-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107359994</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349730</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359994</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359994</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359994</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940760 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781107359994 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349730 |
oclc_num | 907964262 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xvi, 243 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Smart, Nigel P. 1967- Verfasser (DE-588)173244815 aut The algorithmic resolution of diophantine equations N.P. Smart Cambridge Cambridge University Press 1998 1 Online-Ressource (xvi, 243 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 41 Beginning with a brief introduction to algorithms and diophantine equations, this volume aims to provide a coherent account of the methods used to find all the solutions to certain diophantine equations, particularly those procedures which have been developed for use on a computer. The study is divided into three parts, the emphasis throughout being on examining approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems which can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, mainly focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers, with a basic knowledge of number theory, who are interested in solving diophantine equations using computational methods Diophantine equations Algorithmus (DE-588)4001183-5 gnd rswk-swf Diophantische Gleichung (DE-588)4012386-8 gnd rswk-swf Diophantische Gleichung (DE-588)4012386-8 s Algorithmus (DE-588)4001183-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-64156-2 Erscheint auch als Druck-Ausgabe 978-0-521-64633-8 https://doi.org/10.1017/CBO9781107359994 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Smart, Nigel P. 1967- The algorithmic resolution of diophantine equations Diophantine equations Algorithmus (DE-588)4001183-5 gnd Diophantische Gleichung (DE-588)4012386-8 gnd |
subject_GND | (DE-588)4001183-5 (DE-588)4012386-8 |
title | The algorithmic resolution of diophantine equations |
title_auth | The algorithmic resolution of diophantine equations |
title_exact_search | The algorithmic resolution of diophantine equations |
title_full | The algorithmic resolution of diophantine equations N.P. Smart |
title_fullStr | The algorithmic resolution of diophantine equations N.P. Smart |
title_full_unstemmed | The algorithmic resolution of diophantine equations N.P. Smart |
title_short | The algorithmic resolution of diophantine equations |
title_sort | the algorithmic resolution of diophantine equations |
topic | Diophantine equations Algorithmus (DE-588)4001183-5 gnd Diophantische Gleichung (DE-588)4012386-8 gnd |
topic_facet | Diophantine equations Algorithmus Diophantische Gleichung |
url | https://doi.org/10.1017/CBO9781107359994 |
work_keys_str_mv | AT smartnigelp thealgorithmicresolutionofdiophantineequations |