Scattered data approximation:
Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partition...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
17 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBT01 URL des Erstveröffentlichers |
Zusammenfassung: | Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations |
Beschreibung: | 1 Online-Ressource (x, 336 Seiten) |
ISBN: | 9780511617539 |
DOI: | 10.1017/CBO9780511617539 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940749 | ||
003 | DE-604 | ||
005 | 20220228 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780511617539 |c Online |9 978-0-511-61753-9 | ||
024 | 7 | |a 10.1017/CBO9780511617539 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511617539 | ||
035 | |a (OCoLC)967759199 | ||
035 | |a (DE-599)BVBBV043940749 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-703 | ||
082 | 0 | |a 511/.42 |2 22 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Wendland, Holger |d 1968- |e Verfasser |0 (DE-588)1019383682 |4 aut | |
245 | 1 | 0 | |a Scattered data approximation |c Holger Wendland |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 Online-Ressource (x, 336 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge monographs on applied and computational mathematics |v 17 | |
520 | |a Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations | ||
650 | 4 | |a Approximation theory | |
650 | 4 | |a Multivariate analysis | |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multivariate Analyse |0 (DE-588)4040708-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multivariate Approximation |0 (DE-588)4314108-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | 1 | |a Multivariate Analyse |0 (DE-588)4040708-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Multivariate Approximation |0 (DE-588)4314108-0 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-84335-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-13101-8 |
830 | 0 | |a Cambridge monographs on applied and computational mathematics |v 17 |w (DE-604)BV045935225 |9 17 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511617539 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349719 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511617539 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511617539 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511617539 |l UBT01 |p ZDB-20-CBO |q UBT_Einzelkauf_2022 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881664131072 |
---|---|
any_adam_object | |
author | Wendland, Holger 1968- |
author_GND | (DE-588)1019383682 |
author_facet | Wendland, Holger 1968- |
author_role | aut |
author_sort | Wendland, Holger 1968- |
author_variant | h w hw |
building | Verbundindex |
bvnumber | BV043940749 |
classification_rvk | SK 830 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511617539 (OCoLC)967759199 (DE-599)BVBBV043940749 |
dewey-full | 511/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.42 |
dewey-search | 511/.42 |
dewey-sort | 3511 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511617539 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03525nmm a2200577zcb4500</leader><controlfield tag="001">BV043940749</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220228 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511617539</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61753-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511617539</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511617539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967759199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wendland, Holger</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1019383682</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scattered data approximation</subfield><subfield code="c">Holger Wendland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 336 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">17</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Approximation</subfield><subfield code="0">(DE-588)4314108-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Multivariate Approximation</subfield><subfield code="0">(DE-588)4314108-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-84335-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-13101-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">17</subfield><subfield code="w">(DE-604)BV045935225</subfield><subfield code="9">17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511617539</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349719</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511617539</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511617539</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511617539</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBT_Einzelkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940749 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511617539 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349719 |
oclc_num | 967759199 |
open_access_boolean | |
owner | DE-12 DE-92 DE-703 |
owner_facet | DE-12 DE-92 DE-703 |
physical | 1 Online-Ressource (x, 336 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBT_Einzelkauf_2022 |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge monographs on applied and computational mathematics |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Wendland, Holger 1968- Verfasser (DE-588)1019383682 aut Scattered data approximation Holger Wendland Cambridge Cambridge University Press 2005 1 Online-Ressource (x, 336 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 17 Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations Approximation theory Multivariate analysis Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Multivariate Analyse (DE-588)4040708-1 gnd rswk-swf Multivariate Approximation (DE-588)4314108-0 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 s Multivariate Analyse (DE-588)4040708-1 s DE-604 Approximation (DE-588)4002498-2 s Multivariate Approximation (DE-588)4314108-0 s Erscheint auch als Druck-Ausgabe 978-0-521-84335-5 Erscheint auch als Druck-Ausgabe 978-0-521-13101-8 Cambridge monographs on applied and computational mathematics 17 (DE-604)BV045935225 17 https://doi.org/10.1017/CBO9780511617539 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wendland, Holger 1968- Scattered data approximation Cambridge monographs on applied and computational mathematics Approximation theory Multivariate analysis Approximationstheorie (DE-588)4120913-8 gnd Multivariate Analyse (DE-588)4040708-1 gnd Multivariate Approximation (DE-588)4314108-0 gnd Approximation (DE-588)4002498-2 gnd |
subject_GND | (DE-588)4120913-8 (DE-588)4040708-1 (DE-588)4314108-0 (DE-588)4002498-2 |
title | Scattered data approximation |
title_auth | Scattered data approximation |
title_exact_search | Scattered data approximation |
title_full | Scattered data approximation Holger Wendland |
title_fullStr | Scattered data approximation Holger Wendland |
title_full_unstemmed | Scattered data approximation Holger Wendland |
title_short | Scattered data approximation |
title_sort | scattered data approximation |
topic | Approximation theory Multivariate analysis Approximationstheorie (DE-588)4120913-8 gnd Multivariate Analyse (DE-588)4040708-1 gnd Multivariate Approximation (DE-588)4314108-0 gnd Approximation (DE-588)4002498-2 gnd |
topic_facet | Approximation theory Multivariate analysis Approximationstheorie Multivariate Analyse Multivariate Approximation Approximation |
url | https://doi.org/10.1017/CBO9780511617539 |
volume_link | (DE-604)BV045935225 |
work_keys_str_mv | AT wendlandholger scattereddataapproximation |