Introduction to the analysis of normed linear spaces:
This text is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. It aims at providing some insight into basic abstract analysis which is now the contextual language of much modern mathematics. Although it is assumed that the student will have familiari...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2000
|
Schriftenreihe: | Australian Mathematical Society lecture series
13 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This text is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. It aims at providing some insight into basic abstract analysis which is now the contextual language of much modern mathematics. Although it is assumed that the student will have familiarity with elementary real and complex analysis and linear algebra and have studied a course in the analysis of metric spaces, a knowledge of integration theory or general topology is not required. The theme of this text concerns structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. But the implications of the general theory are illustrated with a great variety of example spaces |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiv, 280 pages) |
ISBN: | 9781139168465 |
DOI: | 10.1017/CBO9781139168465 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940742 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781139168465 |c Online |9 978-1-139-16846-5 | ||
024 | 7 | |a 10.1017/CBO9781139168465 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139168465 | ||
035 | |a (OCoLC)992867942 | ||
035 | |a (DE-599)BVBBV043940742 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.732 |2 21 | |
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Giles, J. R. |d 1933- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to the analysis of normed linear spaces |c J.R. Giles |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2000 | |
300 | |a 1 online resource (xiv, 280 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Australian Mathematical Society lecture series |v 13 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This text is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. It aims at providing some insight into basic abstract analysis which is now the contextual language of much modern mathematics. Although it is assumed that the student will have familiarity with elementary real and complex analysis and linear algebra and have studied a course in the analysis of metric spaces, a knowledge of integration theory or general topology is not required. The theme of this text concerns structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. But the implications of the general theory are illustrated with a great variety of example spaces | ||
650 | 4 | |a Normed linear spaces | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Normierter Raum |0 (DE-588)4127735-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | 1 | |a Normierter Raum |0 (DE-588)4127735-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-65375-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139168465 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349712 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139168465 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139168465 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881654693888 |
---|---|
any_adam_object | |
author | Giles, J. R. 1933- |
author_facet | Giles, J. R. 1933- |
author_role | aut |
author_sort | Giles, J. R. 1933- |
author_variant | j r g jr jrg |
building | Verbundindex |
bvnumber | BV043940742 |
classification_rvk | SK 400 SK 600 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139168465 (OCoLC)992867942 (DE-599)BVBBV043940742 |
dewey-full | 515/.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.732 |
dewey-search | 515/.732 |
dewey-sort | 3515 3732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139168465 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02782nmm a2200505zcb4500</leader><controlfield tag="001">BV043940742</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139168465</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-16846-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139168465</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139168465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992867942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940742</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.732</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giles, J. R.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the analysis of normed linear spaces</subfield><subfield code="c">J.R. Giles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 280 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Australian Mathematical Society lecture series</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. It aims at providing some insight into basic abstract analysis which is now the contextual language of much modern mathematics. Although it is assumed that the student will have familiarity with elementary real and complex analysis and linear algebra and have studied a course in the analysis of metric spaces, a knowledge of integration theory or general topology is not required. The theme of this text concerns structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. But the implications of the general theory are illustrated with a great variety of example spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normed linear spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Normierter Raum</subfield><subfield code="0">(DE-588)4127735-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Normierter Raum</subfield><subfield code="0">(DE-588)4127735-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-65375-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139168465</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349712</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139168465</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139168465</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940742 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139168465 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349712 |
oclc_num | 992867942 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 280 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Australian Mathematical Society lecture series |
spelling | Giles, J. R. 1933- Verfasser aut Introduction to the analysis of normed linear spaces J.R. Giles Cambridge Cambridge University Press 2000 1 online resource (xiv, 280 pages) txt rdacontent c rdamedia cr rdacarrier Australian Mathematical Society lecture series 13 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This text is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. It aims at providing some insight into basic abstract analysis which is now the contextual language of much modern mathematics. Although it is assumed that the student will have familiarity with elementary real and complex analysis and linear algebra and have studied a course in the analysis of metric spaces, a knowledge of integration theory or general topology is not required. The theme of this text concerns structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. But the implications of the general theory are illustrated with a great variety of example spaces Normed linear spaces Mathematical analysis Normierter Raum (DE-588)4127735-1 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 s Normierter Raum (DE-588)4127735-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-65375-6 https://doi.org/10.1017/CBO9781139168465 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Giles, J. R. 1933- Introduction to the analysis of normed linear spaces Normed linear spaces Mathematical analysis Normierter Raum (DE-588)4127735-1 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
subject_GND | (DE-588)4127735-1 (DE-588)4018916-8 |
title | Introduction to the analysis of normed linear spaces |
title_auth | Introduction to the analysis of normed linear spaces |
title_exact_search | Introduction to the analysis of normed linear spaces |
title_full | Introduction to the analysis of normed linear spaces J.R. Giles |
title_fullStr | Introduction to the analysis of normed linear spaces J.R. Giles |
title_full_unstemmed | Introduction to the analysis of normed linear spaces J.R. Giles |
title_short | Introduction to the analysis of normed linear spaces |
title_sort | introduction to the analysis of normed linear spaces |
topic | Normed linear spaces Mathematical analysis Normierter Raum (DE-588)4127735-1 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
topic_facet | Normed linear spaces Mathematical analysis Normierter Raum Funktionalanalysis |
url | https://doi.org/10.1017/CBO9781139168465 |
work_keys_str_mv | AT gilesjr introductiontotheanalysisofnormedlinearspaces |