Lectures on Lyapunov exponents:
The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the signific...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schriftenreihe: | Cambridge studies in advanced mathematics
145 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (xiv, 202 Seiten) |
ISBN: | 9781139976602 |
DOI: | 10.1017/CBO9781139976602 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940724 | ||
003 | DE-604 | ||
005 | 20190304 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781139976602 |c Online |9 978-1-139-97660-2 | ||
024 | 7 | |a 10.1017/CBO9781139976602 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139976602 | ||
035 | |a (OCoLC)907964312 | ||
035 | |a (DE-599)BVBBV043940724 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.48 |2 23 | |
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a SK 880 |0 (DE-625)143266: |2 rvk | ||
100 | 1 | |a Viana, Marcelo |d 1962- |e Verfasser |0 (DE-588)1073175278 |4 aut | |
245 | 1 | 0 | |a Lectures on Lyapunov exponents |c Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 Online-Ressource (xiv, 202 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics |v 145 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Machine generated contents note: Preface; 1. Introduction; 2. Linear cocycles; 3. Extremal Lyapunov exponents; 4. Multiplicative ergodic theorem; 5. Stationary measures; 6. Exponents and invariant measures; 7. Invariance principle; 8. Simplicity; 9. Generic cocycles; 10. Continuity; References; Index | |
520 | |a The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field | ||
650 | 4 | |a Lyapunov exponents | |
650 | 0 | 7 | |a Ljapunov-Exponent |0 (DE-588)4123668-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ljapunov-Exponent |0 (DE-588)4123668-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-08173-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139976602 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349694 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139976602 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139976602 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139976602 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881600167936 |
---|---|
any_adam_object | |
author | Viana, Marcelo 1962- |
author_GND | (DE-588)1073175278 |
author_facet | Viana, Marcelo 1962- |
author_role | aut |
author_sort | Viana, Marcelo 1962- |
author_variant | m v mv |
building | Verbundindex |
bvnumber | BV043940724 |
classification_rvk | SK 810 SK 880 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: Preface; 1. Introduction; 2. Linear cocycles; 3. Extremal Lyapunov exponents; 4. Multiplicative ergodic theorem; 5. Stationary measures; 6. Exponents and invariant measures; 7. Invariance principle; 8. Simplicity; 9. Generic cocycles; 10. Continuity; References; Index |
ctrlnum | (ZDB-20-CBO)CR9781139976602 (OCoLC)907964312 (DE-599)BVBBV043940724 |
dewey-full | 515/.48 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.48 |
dewey-search | 515/.48 |
dewey-sort | 3515 248 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139976602 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02994nmm a2200481zcb4500</leader><controlfield tag="001">BV043940724</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190304 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139976602</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-97660-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139976602</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139976602</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907964312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940724</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Viana, Marcelo</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1073175278</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Lyapunov exponents</subfield><subfield code="c">Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 202 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">145</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: Preface; 1. Introduction; 2. Linear cocycles; 3. Extremal Lyapunov exponents; 4. Multiplicative ergodic theorem; 5. Stationary measures; 6. Exponents and invariant measures; 7. Invariance principle; 8. Simplicity; 9. Generic cocycles; 10. Continuity; References; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov exponents</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ljapunov-Exponent</subfield><subfield code="0">(DE-588)4123668-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ljapunov-Exponent</subfield><subfield code="0">(DE-588)4123668-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-08173-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139976602</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349694</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139976602</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139976602</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139976602</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940724 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781139976602 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349694 |
oclc_num | 907964312 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xiv, 202 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Viana, Marcelo 1962- Verfasser (DE-588)1073175278 aut Lectures on Lyapunov exponents Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Cambridge Cambridge University Press 2014 1 Online-Ressource (xiv, 202 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 145 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine generated contents note: Preface; 1. Introduction; 2. Linear cocycles; 3. Extremal Lyapunov exponents; 4. Multiplicative ergodic theorem; 5. Stationary measures; 6. Exponents and invariant measures; 7. Invariance principle; 8. Simplicity; 9. Generic cocycles; 10. Continuity; References; Index The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field Lyapunov exponents Ljapunov-Exponent (DE-588)4123668-3 gnd rswk-swf Ljapunov-Exponent (DE-588)4123668-3 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-107-08173-4 https://doi.org/10.1017/CBO9781139976602 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Viana, Marcelo 1962- Lectures on Lyapunov exponents Machine generated contents note: Preface; 1. Introduction; 2. Linear cocycles; 3. Extremal Lyapunov exponents; 4. Multiplicative ergodic theorem; 5. Stationary measures; 6. Exponents and invariant measures; 7. Invariance principle; 8. Simplicity; 9. Generic cocycles; 10. Continuity; References; Index Lyapunov exponents Ljapunov-Exponent (DE-588)4123668-3 gnd |
subject_GND | (DE-588)4123668-3 |
title | Lectures on Lyapunov exponents |
title_auth | Lectures on Lyapunov exponents |
title_exact_search | Lectures on Lyapunov exponents |
title_full | Lectures on Lyapunov exponents Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro |
title_fullStr | Lectures on Lyapunov exponents Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro |
title_full_unstemmed | Lectures on Lyapunov exponents Marcelo Viana, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro |
title_short | Lectures on Lyapunov exponents |
title_sort | lectures on lyapunov exponents |
topic | Lyapunov exponents Ljapunov-Exponent (DE-588)4123668-3 gnd |
topic_facet | Lyapunov exponents Ljapunov-Exponent |
url | https://doi.org/10.1017/CBO9781139976602 |
work_keys_str_mv | AT vianamarcelo lecturesonlyapunovexponents |