Equilibrium states in ergodic theory:
This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on fi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | London Mathematical Society student texts
42 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix |
Beschreibung: | 1 Online-Ressource (ix, 178 Seiten) |
ISBN: | 9781107359987 |
DOI: | 10.1017/CBO9781107359987 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940719 | ||
003 | DE-604 | ||
005 | 20190603 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781107359987 |c Online |9 978-1-107-35998-7 | ||
024 | 7 | |a 10.1017/CBO9781107359987 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107359987 | ||
035 | |a (OCoLC)967759291 | ||
035 | |a (DE-599)BVBBV043940719 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.42 |2 21 | |
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
100 | 1 | |a Keller, Gerhard |d 1954- |e Verfasser |0 (DE-588)131504177 |4 aut | |
245 | 1 | 0 | |a Equilibrium states in ergodic theory |c Gerhard Keller |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 Online-Ressource (ix, 178 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 42 | |
520 | |a This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix | ||
650 | 4 | |a Ergodic theory | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 0 | 7 | |a Gleichgewicht |0 (DE-588)4121372-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ergodentheorie |0 (DE-588)4015246-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ergodentheorie |0 (DE-588)4015246-7 |D s |
689 | 0 | 1 | |a Gleichgewicht |0 (DE-588)4121372-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-59420-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-59534-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107359987 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349689 | ||
966 | e | |u https://doi.org/10.1017/CBO9781107359987 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107359987 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107359987 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881584439296 |
---|---|
any_adam_object | |
author | Keller, Gerhard 1954- |
author_GND | (DE-588)131504177 |
author_facet | Keller, Gerhard 1954- |
author_role | aut |
author_sort | Keller, Gerhard 1954- |
author_variant | g k gk |
building | Verbundindex |
bvnumber | BV043940719 |
classification_rvk | SK 810 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107359987 (OCoLC)967759291 (DE-599)BVBBV043940719 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107359987 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03032nmm a2200493zcb4500</leader><controlfield tag="001">BV043940719</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190603 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107359987</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-35998-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107359987</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107359987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967759291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940719</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.42</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Keller, Gerhard</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131504177</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equilibrium states in ergodic theory</subfield><subfield code="c">Gerhard Keller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 178 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">42</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gleichgewicht</subfield><subfield code="0">(DE-588)4121372-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gleichgewicht</subfield><subfield code="0">(DE-588)4121372-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-59420-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-59534-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107359987</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349689</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359987</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359987</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359987</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940719 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9781107359987 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349689 |
oclc_num | 967759291 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (ix, 178 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Keller, Gerhard 1954- Verfasser (DE-588)131504177 aut Equilibrium states in ergodic theory Gerhard Keller Cambridge Cambridge University Press 1998 1 Online-Ressource (ix, 178 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 42 This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix Ergodic theory Differentiable dynamical systems Gleichgewicht (DE-588)4121372-5 gnd rswk-swf Ergodentheorie (DE-588)4015246-7 gnd rswk-swf Ergodentheorie (DE-588)4015246-7 s Gleichgewicht (DE-588)4121372-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-59420-2 Erscheint auch als Druck-Ausgabe 978-0-521-59534-6 https://doi.org/10.1017/CBO9781107359987 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Keller, Gerhard 1954- Equilibrium states in ergodic theory Ergodic theory Differentiable dynamical systems Gleichgewicht (DE-588)4121372-5 gnd Ergodentheorie (DE-588)4015246-7 gnd |
subject_GND | (DE-588)4121372-5 (DE-588)4015246-7 |
title | Equilibrium states in ergodic theory |
title_auth | Equilibrium states in ergodic theory |
title_exact_search | Equilibrium states in ergodic theory |
title_full | Equilibrium states in ergodic theory Gerhard Keller |
title_fullStr | Equilibrium states in ergodic theory Gerhard Keller |
title_full_unstemmed | Equilibrium states in ergodic theory Gerhard Keller |
title_short | Equilibrium states in ergodic theory |
title_sort | equilibrium states in ergodic theory |
topic | Ergodic theory Differentiable dynamical systems Gleichgewicht (DE-588)4121372-5 gnd Ergodentheorie (DE-588)4015246-7 gnd |
topic_facet | Ergodic theory Differentiable dynamical systems Gleichgewicht Ergodentheorie |
url | https://doi.org/10.1017/CBO9781107359987 |
work_keys_str_mv | AT kellergerhard equilibriumstatesinergodictheory |