Lie algebras of finite and affine type:
Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algeb...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schriftenreihe: | Cambridge studies in advanced mathematics
96 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The first half of the book deals with classification of the finite dimensional simple Lie algebras and of their finite dimensional irreducible representations. The second half introduces the theory of Kac-Moody algebras, concentrating particularly on those of affine type. A brief account of Borcherds algebras is also included. An Appendix gives a summary of the basic properties of each Lie algebra of finite and affine type |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 632 Seiten) |
ISBN: | 9780511614910 |
DOI: | 10.1017/CBO9780511614910 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940683 | ||
003 | DE-604 | ||
005 | 20231215 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780511614910 |c Online |9 978-0-511-61491-0 | ||
024 | 7 | |a 10.1017/CBO9780511614910 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511614910 | ||
035 | |a (OCoLC)992932411 | ||
035 | |a (DE-599)BVBBV043940683 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 512.482 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Carter, Roger W. |d 1934- |e Verfasser |0 (DE-588)128642831 |4 aut | |
245 | 1 | 0 | |a Lie algebras of finite and affine type |c R.W. Carter |
246 | 1 | 3 | |a Lie Algebras of Finite & Affine Type |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 online resource (xvii, 632 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 96 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The first half of the book deals with classification of the finite dimensional simple Lie algebras and of their finite dimensional irreducible representations. The second half introduces the theory of Kac-Moody algebras, concentrating particularly on those of affine type. A brief account of Borcherds algebras is also included. An Appendix gives a summary of the basic properties of each Lie algebra of finite and affine type | ||
650 | 4 | |a Lie algebras | |
650 | 0 | 7 | |a Kac-Moody-Algebra |0 (DE-588)4223399-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kac-Moody-Algebra |0 (DE-588)4223399-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-85138-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-47198-6 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 96 |w (DE-604)BV044781283 |9 96 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511614910 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349653 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511614910 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511614910 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511614910 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881511038976 |
---|---|
any_adam_object | |
author | Carter, Roger W. 1934- |
author_GND | (DE-588)128642831 |
author_facet | Carter, Roger W. 1934- |
author_role | aut |
author_sort | Carter, Roger W. 1934- |
author_variant | r w c rw rwc |
building | Verbundindex |
bvnumber | BV043940683 |
classification_rvk | SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511614910 (OCoLC)992932411 (DE-599)BVBBV043940683 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511614910 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03036nmm a2200529zcb4500</leader><controlfield tag="001">BV043940683</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511614910</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61491-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511614910</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511614910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992932411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940683</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carter, Roger W.</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128642831</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie algebras of finite and affine type</subfield><subfield code="c">R.W. Carter</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Lie Algebras of Finite & Affine Type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 632 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">96</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The first half of the book deals with classification of the finite dimensional simple Lie algebras and of their finite dimensional irreducible representations. The second half introduces the theory of Kac-Moody algebras, concentrating particularly on those of affine type. A brief account of Borcherds algebras is also included. An Appendix gives a summary of the basic properties of each Lie algebra of finite and affine type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-85138-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-47198-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">96</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">96</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511614910</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349653</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511614910</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511614910</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511614910</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940683 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511614910 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349653 |
oclc_num | 992932411 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (xvii, 632 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Carter, Roger W. 1934- Verfasser (DE-588)128642831 aut Lie algebras of finite and affine type R.W. Carter Lie Algebras of Finite & Affine Type Cambridge Cambridge University Press 2005 1 online resource (xvii, 632 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 96 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The first half of the book deals with classification of the finite dimensional simple Lie algebras and of their finite dimensional irreducible representations. The second half introduces the theory of Kac-Moody algebras, concentrating particularly on those of affine type. A brief account of Borcherds algebras is also included. An Appendix gives a summary of the basic properties of each Lie algebra of finite and affine type Lie algebras Kac-Moody-Algebra (DE-588)4223399-9 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Kac-Moody-Algebra (DE-588)4223399-9 s DE-604 Lie-Algebra (DE-588)4130355-6 s Erscheint auch als Druck-Ausgabe 978-0-521-85138-1 Erscheint auch als Druck-Ausgabe 978-1-107-47198-6 Cambridge studies in advanced mathematics 96 (DE-604)BV044781283 96 https://doi.org/10.1017/CBO9780511614910 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Carter, Roger W. 1934- Lie algebras of finite and affine type Cambridge studies in advanced mathematics Lie algebras Kac-Moody-Algebra (DE-588)4223399-9 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4223399-9 (DE-588)4130355-6 |
title | Lie algebras of finite and affine type |
title_alt | Lie Algebras of Finite & Affine Type |
title_auth | Lie algebras of finite and affine type |
title_exact_search | Lie algebras of finite and affine type |
title_full | Lie algebras of finite and affine type R.W. Carter |
title_fullStr | Lie algebras of finite and affine type R.W. Carter |
title_full_unstemmed | Lie algebras of finite and affine type R.W. Carter |
title_short | Lie algebras of finite and affine type |
title_sort | lie algebras of finite and affine type |
topic | Lie algebras Kac-Moody-Algebra (DE-588)4223399-9 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Lie algebras Kac-Moody-Algebra Lie-Algebra |
url | https://doi.org/10.1017/CBO9780511614910 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT carterrogerw liealgebrasoffiniteandaffinetype AT carterrogerw liealgebrasoffiniteaffinetype |