Turbulence, coherent structures, dynamical systems, and symmetry:
For turbulent flows at relatively low speeds there exists an excellent mathematical model in the incompressible Navier–Stokes equations. Why then is the 'problem of turbulence' so difficult? One reason is that these nonlinear partial differential equations appear to be insoluble, except th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1996
|
Schriftenreihe: | Cambridge monographs on mechanics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | For turbulent flows at relatively low speeds there exists an excellent mathematical model in the incompressible Navier–Stokes equations. Why then is the 'problem of turbulence' so difficult? One reason is that these nonlinear partial differential equations appear to be insoluble, except through numerical simulations, which offer useful approximations but little direct understanding. Three recent developments offer new hope. First, the discovery by experimentalists of coherent structures in certain turbulent flows. Secondly, the suggestion that strange attractors and other ideas from finite-dimensional dynamical systems theory might play a role in the analysis of the governing equations. And, finally, the introduction of the Karhunen-Loève or proper orthogonal decomposition. This book introduces these developments and describes how they may be combined to create low-dimensional models of turbulence, resolving only the coherent structures. This book will interest engineers, especially in the aerospace, chemical, civil, environmental and geophysical areas, as well as physicists and applied mathematicians concerned with turbulence |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xviii, 420 pages) |
ISBN: | 9780511622700 |
DOI: | 10.1017/CBO9780511622700 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940677 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1996 |||| o||u| ||||||eng d | ||
020 | |a 9780511622700 |c Online |9 978-0-511-62270-0 | ||
024 | 7 | |a 10.1017/CBO9780511622700 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511622700 | ||
035 | |a (OCoLC)849904093 | ||
035 | |a (DE-599)BVBBV043940677 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 532/.0527/0151535 |2 20 | |
084 | |a UF 4300 |0 (DE-625)145584: |2 rvk | ||
100 | 1 | |a Holmes, Philip |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Turbulence, coherent structures, dynamical systems, and symmetry |c Philip Holmes, John L. Lumley, and Gal Berkooz |
246 | 1 | 3 | |a Turbulence, Coherent Structures, Dynamical Systems & Symmetry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1996 | |
300 | |a 1 online resource (xviii, 420 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mechanics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a For turbulent flows at relatively low speeds there exists an excellent mathematical model in the incompressible Navier–Stokes equations. Why then is the 'problem of turbulence' so difficult? One reason is that these nonlinear partial differential equations appear to be insoluble, except through numerical simulations, which offer useful approximations but little direct understanding. Three recent developments offer new hope. First, the discovery by experimentalists of coherent structures in certain turbulent flows. Secondly, the suggestion that strange attractors and other ideas from finite-dimensional dynamical systems theory might play a role in the analysis of the governing equations. And, finally, the introduction of the Karhunen-Loève or proper orthogonal decomposition. This book introduces these developments and describes how they may be combined to create low-dimensional models of turbulence, resolving only the coherent structures. This book will interest engineers, especially in the aerospace, chemical, civil, environmental and geophysical areas, as well as physicists and applied mathematicians concerned with turbulence | ||
650 | 4 | |a Turbulence | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 0 | 7 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohärenz |0 (DE-588)4139923-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 0 | 1 | |a Kohärenz |0 (DE-588)4139923-7 |D s |
689 | 0 | 2 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 3 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 0 | 4 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 1 | 1 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Lumley, John L. |d 1930- |e Sonstige |4 oth | |
700 | 1 | |a Berkooz, Gal |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-55142-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-63419-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511622700 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349647 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511622700 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511622700 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881492164608 |
---|---|
any_adam_object | |
author | Holmes, Philip 1945- |
author_facet | Holmes, Philip 1945- |
author_role | aut |
author_sort | Holmes, Philip 1945- |
author_variant | p h ph |
building | Verbundindex |
bvnumber | BV043940677 |
classification_rvk | UF 4300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511622700 (OCoLC)849904093 (DE-599)BVBBV043940677 |
dewey-full | 532/.0527/0151535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0527/0151535 |
dewey-search | 532/.0527/0151535 |
dewey-sort | 3532 3527 6151535 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511622700 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04089nmm a2200673zc 4500</leader><controlfield tag="001">BV043940677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511622700</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62270-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511622700</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511622700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849904093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0527/0151535</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4300</subfield><subfield code="0">(DE-625)145584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Holmes, Philip</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Turbulence, coherent structures, dynamical systems, and symmetry</subfield><subfield code="c">Philip Holmes, John L. Lumley, and Gal Berkooz</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Turbulence, Coherent Structures, Dynamical Systems & Symmetry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 420 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mechanics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For turbulent flows at relatively low speeds there exists an excellent mathematical model in the incompressible Navier–Stokes equations. Why then is the 'problem of turbulence' so difficult? One reason is that these nonlinear partial differential equations appear to be insoluble, except through numerical simulations, which offer useful approximations but little direct understanding. Three recent developments offer new hope. First, the discovery by experimentalists of coherent structures in certain turbulent flows. Secondly, the suggestion that strange attractors and other ideas from finite-dimensional dynamical systems theory might play a role in the analysis of the governing equations. And, finally, the introduction of the Karhunen-Loève or proper orthogonal decomposition. This book introduces these developments and describes how they may be combined to create low-dimensional models of turbulence, resolving only the coherent structures. This book will interest engineers, especially in the aerospace, chemical, civil, environmental and geophysical areas, as well as physicists and applied mathematicians concerned with turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohärenz</subfield><subfield code="0">(DE-588)4139923-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohärenz</subfield><subfield code="0">(DE-588)4139923-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lumley, John L.</subfield><subfield code="d">1930-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berkooz, Gal</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-55142-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-63419-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511622700</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349647</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511622700</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511622700</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940677 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511622700 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349647 |
oclc_num | 849904093 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xviii, 420 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mechanics |
spelling | Holmes, Philip 1945- Verfasser aut Turbulence, coherent structures, dynamical systems, and symmetry Philip Holmes, John L. Lumley, and Gal Berkooz Turbulence, Coherent Structures, Dynamical Systems & Symmetry Cambridge Cambridge University Press 1996 1 online resource (xviii, 420 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mechanics Title from publisher's bibliographic system (viewed on 05 Oct 2015) For turbulent flows at relatively low speeds there exists an excellent mathematical model in the incompressible Navier–Stokes equations. Why then is the 'problem of turbulence' so difficult? One reason is that these nonlinear partial differential equations appear to be insoluble, except through numerical simulations, which offer useful approximations but little direct understanding. Three recent developments offer new hope. First, the discovery by experimentalists of coherent structures in certain turbulent flows. Secondly, the suggestion that strange attractors and other ideas from finite-dimensional dynamical systems theory might play a role in the analysis of the governing equations. And, finally, the introduction of the Karhunen-Loève or proper orthogonal decomposition. This book introduces these developments and describes how they may be combined to create low-dimensional models of turbulence, resolving only the coherent structures. This book will interest engineers, especially in the aerospace, chemical, civil, environmental and geophysical areas, as well as physicists and applied mathematicians concerned with turbulence Turbulence Differentiable dynamical systems Differenzierbares dynamisches System (DE-588)4137931-7 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Kohärenz (DE-588)4139923-7 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 s Kohärenz (DE-588)4139923-7 s Dynamisches System (DE-588)4013396-5 s Symmetrie (DE-588)4058724-1 s Mathematische Methode (DE-588)4155620-3 s 1\p DE-604 Differenzierbares dynamisches System (DE-588)4137931-7 s 2\p DE-604 Lumley, John L. 1930- Sonstige oth Berkooz, Gal Sonstige oth Erscheint auch als Druckausgabe 978-0-521-55142-7 Erscheint auch als Druckausgabe 978-0-521-63419-9 https://doi.org/10.1017/CBO9780511622700 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Holmes, Philip 1945- Turbulence, coherent structures, dynamical systems, and symmetry Turbulence Differentiable dynamical systems Differenzierbares dynamisches System (DE-588)4137931-7 gnd Symmetrie (DE-588)4058724-1 gnd Turbulente Strömung (DE-588)4117265-6 gnd Dynamisches System (DE-588)4013396-5 gnd Mathematische Methode (DE-588)4155620-3 gnd Kohärenz (DE-588)4139923-7 gnd |
subject_GND | (DE-588)4137931-7 (DE-588)4058724-1 (DE-588)4117265-6 (DE-588)4013396-5 (DE-588)4155620-3 (DE-588)4139923-7 |
title | Turbulence, coherent structures, dynamical systems, and symmetry |
title_alt | Turbulence, Coherent Structures, Dynamical Systems & Symmetry |
title_auth | Turbulence, coherent structures, dynamical systems, and symmetry |
title_exact_search | Turbulence, coherent structures, dynamical systems, and symmetry |
title_full | Turbulence, coherent structures, dynamical systems, and symmetry Philip Holmes, John L. Lumley, and Gal Berkooz |
title_fullStr | Turbulence, coherent structures, dynamical systems, and symmetry Philip Holmes, John L. Lumley, and Gal Berkooz |
title_full_unstemmed | Turbulence, coherent structures, dynamical systems, and symmetry Philip Holmes, John L. Lumley, and Gal Berkooz |
title_short | Turbulence, coherent structures, dynamical systems, and symmetry |
title_sort | turbulence coherent structures dynamical systems and symmetry |
topic | Turbulence Differentiable dynamical systems Differenzierbares dynamisches System (DE-588)4137931-7 gnd Symmetrie (DE-588)4058724-1 gnd Turbulente Strömung (DE-588)4117265-6 gnd Dynamisches System (DE-588)4013396-5 gnd Mathematische Methode (DE-588)4155620-3 gnd Kohärenz (DE-588)4139923-7 gnd |
topic_facet | Turbulence Differentiable dynamical systems Differenzierbares dynamisches System Symmetrie Turbulente Strömung Dynamisches System Mathematische Methode Kohärenz |
url | https://doi.org/10.1017/CBO9780511622700 |
work_keys_str_mv | AT holmesphilip turbulencecoherentstructuresdynamicalsystemsandsymmetry AT lumleyjohnl turbulencecoherentstructuresdynamicalsystemsandsymmetry AT berkoozgal turbulencecoherentstructuresdynamicalsystemsandsymmetry AT holmesphilip turbulencecoherentstructuresdynamicalsystemssymmetry AT lumleyjohnl turbulencecoherentstructuresdynamicalsystemssymmetry AT berkoozgal turbulencecoherentstructuresdynamicalsystemssymmetry |