Statistical learning for biomedical data:
This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schriftenreihe: | Practical guides to biostatistics and epidemiology
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UER01 Volltext |
Zusammenfassung: | This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests™, neural nets, support vector machines, nearest neighbors and boosting |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 285 pages) |
ISBN: | 9780511975820 |
DOI: | 10.1017/CBO9780511975820 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940640 | ||
003 | DE-604 | ||
005 | 20200629 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780511975820 |c Online |9 978-0-511-97582-0 | ||
024 | 7 | |a 10.1017/CBO9780511975820 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511975820 | ||
035 | |a (OCoLC)992459947 | ||
035 | |a (DE-599)BVBBV043940640 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-29 |a DE-92 | ||
082 | 0 | |a 614.285 |2 22 | |
084 | |a XF 3400 |0 (DE-625)152765: |2 rvk | ||
100 | 1 | |a Malley, James D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistical learning for biomedical data |c James D. Malley, Karen G. Malley, Sinisa Pajevic |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 online resource (xii, 285 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Practical guides to biostatistics and epidemiology | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests™, neural nets, support vector machines, nearest neighbors and boosting | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Medical statistics / Data processing | |
650 | 4 | |a Biometry / Data processing | |
650 | 0 | 7 | |a Epidemiologie |0 (DE-588)4015016-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Medizinische Statistik |0 (DE-588)4127563-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biostatistik |0 (DE-588)4729990-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Biostatistik |0 (DE-588)4729990-3 |D s |
689 | 0 | 1 | |a Medizinische Statistik |0 (DE-588)4127563-9 |D s |
689 | 0 | 2 | |a Epidemiologie |0 (DE-588)4015016-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Malley, Karen G. |e Verfasser |4 aut | |
700 | 1 | |a Pajevic, Sinisa |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-521-87580-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-521-69909-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511975820 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349610 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511975820 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511975820 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511975820 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881427152896 |
---|---|
any_adam_object | |
author | Malley, James D. Malley, Karen G. Pajevic, Sinisa |
author_facet | Malley, James D. Malley, Karen G. Pajevic, Sinisa |
author_role | aut aut aut |
author_sort | Malley, James D. |
author_variant | j d m jd jdm k g m kg kgm s p sp |
building | Verbundindex |
bvnumber | BV043940640 |
classification_rvk | XF 3400 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511975820 (OCoLC)992459947 (DE-599)BVBBV043940640 |
dewey-full | 614.285 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 614 - Forensic medicine; incidence of disease |
dewey-raw | 614.285 |
dewey-search | 614.285 |
dewey-sort | 3614.285 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
doi_str_mv | 10.1017/CBO9780511975820 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03514nmm a2200577zc 4500</leader><controlfield tag="001">BV043940640</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200629 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511975820</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-97582-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511975820</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511975820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992459947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940640</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">614.285</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XF 3400</subfield><subfield code="0">(DE-625)152765:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malley, James D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical learning for biomedical data</subfield><subfield code="c">James D. Malley, Karen G. Malley, Sinisa Pajevic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 285 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Practical guides to biostatistics and epidemiology</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests™, neural nets, support vector machines, nearest neighbors and boosting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical statistics / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometry / Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Epidemiologie</subfield><subfield code="0">(DE-588)4015016-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Medizinische Statistik</subfield><subfield code="0">(DE-588)4127563-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biostatistik</subfield><subfield code="0">(DE-588)4729990-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biostatistik</subfield><subfield code="0">(DE-588)4729990-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Medizinische Statistik</subfield><subfield code="0">(DE-588)4127563-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Epidemiologie</subfield><subfield code="0">(DE-588)4015016-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malley, Karen G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pajevic, Sinisa</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-521-87580-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-521-69909-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511975820</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349610</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511975820</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511975820</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511975820</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940640 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:14Z |
institution | BVB |
isbn | 9780511975820 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349610 |
oclc_num | 992459947 |
open_access_boolean | |
owner | DE-12 DE-29 DE-92 |
owner_facet | DE-12 DE-29 DE-92 |
physical | 1 online resource (xii, 285 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UER_PDA_CBO_Kauf |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Practical guides to biostatistics and epidemiology |
spelling | Malley, James D. Verfasser aut Statistical learning for biomedical data James D. Malley, Karen G. Malley, Sinisa Pajevic Cambridge Cambridge University Press 2011 1 online resource (xii, 285 pages) txt rdacontent c rdamedia cr rdacarrier Practical guides to biostatistics and epidemiology Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests™, neural nets, support vector machines, nearest neighbors and boosting Datenverarbeitung Medical statistics / Data processing Biometry / Data processing Epidemiologie (DE-588)4015016-1 gnd rswk-swf Medizinische Statistik (DE-588)4127563-9 gnd rswk-swf Biostatistik (DE-588)4729990-3 gnd rswk-swf Biostatistik (DE-588)4729990-3 s Medizinische Statistik (DE-588)4127563-9 s Epidemiologie (DE-588)4015016-1 s 1\p DE-604 Malley, Karen G. Verfasser aut Pajevic, Sinisa Verfasser aut Erscheint auch als Druck-Ausgabe, Hardcover 978-0-521-87580-6 Erscheint auch als Druck-Ausgabe, Paperback 978-0-521-69909-9 https://doi.org/10.1017/CBO9780511975820 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Malley, James D. Malley, Karen G. Pajevic, Sinisa Statistical learning for biomedical data Datenverarbeitung Medical statistics / Data processing Biometry / Data processing Epidemiologie (DE-588)4015016-1 gnd Medizinische Statistik (DE-588)4127563-9 gnd Biostatistik (DE-588)4729990-3 gnd |
subject_GND | (DE-588)4015016-1 (DE-588)4127563-9 (DE-588)4729990-3 |
title | Statistical learning for biomedical data |
title_auth | Statistical learning for biomedical data |
title_exact_search | Statistical learning for biomedical data |
title_full | Statistical learning for biomedical data James D. Malley, Karen G. Malley, Sinisa Pajevic |
title_fullStr | Statistical learning for biomedical data James D. Malley, Karen G. Malley, Sinisa Pajevic |
title_full_unstemmed | Statistical learning for biomedical data James D. Malley, Karen G. Malley, Sinisa Pajevic |
title_short | Statistical learning for biomedical data |
title_sort | statistical learning for biomedical data |
topic | Datenverarbeitung Medical statistics / Data processing Biometry / Data processing Epidemiologie (DE-588)4015016-1 gnd Medizinische Statistik (DE-588)4127563-9 gnd Biostatistik (DE-588)4729990-3 gnd |
topic_facet | Datenverarbeitung Medical statistics / Data processing Biometry / Data processing Epidemiologie Medizinische Statistik Biostatistik |
url | https://doi.org/10.1017/CBO9780511975820 |
work_keys_str_mv | AT malleyjamesd statisticallearningforbiomedicaldata AT malleykareng statisticallearningforbiomedicaldata AT pajevicsinisa statisticallearningforbiomedicaldata |