Algebraic and analytic geometry:
This textbook, for an undergraduate course in modern algebraic geometry, recognizes that the typical undergraduate curriculum contains a great deal of analysis and, by contrast, little algebra. Because of this imbalance, it seems most natural to present algebraic geometry by highlighting the way it...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | London Mathematical Society lecture note series
345 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This textbook, for an undergraduate course in modern algebraic geometry, recognizes that the typical undergraduate curriculum contains a great deal of analysis and, by contrast, little algebra. Because of this imbalance, it seems most natural to present algebraic geometry by highlighting the way it connects algebra and analysis; the average student will probably be more familiar and more comfortable with the analytic component. The book therefore focuses on Serre's GAGA theorem, which perhaps best encapsulates the link between algebra and analysis. GAGA provides the unifying theme of the book: we develop enough of the modern machinery of algebraic geometry to be able to give an essentially complete proof, at a level accessible to undergraduates throughout. The book is based on a course which the author has taught, twice, at the Australian National University |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 420 pages) |
ISBN: | 9780511800443 |
DOI: | 10.1017/CBO9780511800443 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940617 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511800443 |c Online |9 978-0-511-80044-3 | ||
024 | 7 | |a 10.1017/CBO9780511800443 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511800443 | ||
035 | |a (OCoLC)850570692 | ||
035 | |a (DE-599)BVBBV043940617 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Neeman, Amnon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic and analytic geometry |c Amnon Neeman |
246 | 1 | 3 | |a Algebraic & Analytic Geometry |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xii, 420 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 345 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Foreword -- 1. Introduction -- 2. Manifolds -- 3. Schemes -- 4. The complex topology -- 5. The analytification of a scheme -- 6. The high road to analytification -- 7. Coherent sheaves -- 8. Projective space -- the statements -- 9. Projective space -- the proofs -- 10. The proof of GAGA -- Appendix. The proofs concerning analytification; Bibliography -- Glossary -- Index | |
520 | |a This textbook, for an undergraduate course in modern algebraic geometry, recognizes that the typical undergraduate curriculum contains a great deal of analysis and, by contrast, little algebra. Because of this imbalance, it seems most natural to present algebraic geometry by highlighting the way it connects algebra and analysis; the average student will probably be more familiar and more comfortable with the analytic component. The book therefore focuses on Serre's GAGA theorem, which perhaps best encapsulates the link between algebra and analysis. GAGA provides the unifying theme of the book: we develop enough of the modern machinery of algebraic geometry to be able to give an essentially complete proof, at a level accessible to undergraduates throughout. The book is based on a course which the author has taught, twice, at the Australian National University | ||
650 | 4 | |a Geometry, Algebraic | |
650 | 4 | |a Geometry, Analytic | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-70983-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511800443 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349587 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511800443 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511800443 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881357946880 |
---|---|
any_adam_object | |
author | Neeman, Amnon |
author_facet | Neeman, Amnon |
author_role | aut |
author_sort | Neeman, Amnon |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV043940617 |
classification_rvk | SI 320 SK 240 |
collection | ZDB-20-CBO |
contents | Foreword -- 1. Introduction -- 2. Manifolds -- 3. Schemes -- 4. The complex topology -- 5. The analytification of a scheme -- 6. The high road to analytification -- 7. Coherent sheaves -- 8. Projective space -- the statements -- 9. Projective space -- the proofs -- 10. The proof of GAGA -- Appendix. The proofs concerning analytification; Bibliography -- Glossary -- Index |
ctrlnum | (ZDB-20-CBO)CR9780511800443 (OCoLC)850570692 (DE-599)BVBBV043940617 |
dewey-full | 516.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3 |
dewey-search | 516.3 |
dewey-sort | 3516.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511800443 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03319nmm a2200529zcb4500</leader><controlfield tag="001">BV043940617</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511800443</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-80044-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511800443</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511800443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850570692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940617</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neeman, Amnon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic and analytic geometry</subfield><subfield code="c">Amnon Neeman</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Algebraic & Analytic Geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 420 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">345</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Foreword -- 1. Introduction -- 2. Manifolds -- 3. Schemes -- 4. The complex topology -- 5. The analytification of a scheme -- 6. The high road to analytification -- 7. Coherent sheaves -- 8. Projective space -- the statements -- 9. Projective space -- the proofs -- 10. The proof of GAGA -- Appendix. The proofs concerning analytification; Bibliography -- Glossary -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook, for an undergraduate course in modern algebraic geometry, recognizes that the typical undergraduate curriculum contains a great deal of analysis and, by contrast, little algebra. Because of this imbalance, it seems most natural to present algebraic geometry by highlighting the way it connects algebra and analysis; the average student will probably be more familiar and more comfortable with the analytic component. The book therefore focuses on Serre's GAGA theorem, which perhaps best encapsulates the link between algebra and analysis. GAGA provides the unifying theme of the book: we develop enough of the modern machinery of algebraic geometry to be able to give an essentially complete proof, at a level accessible to undergraduates throughout. The book is based on a course which the author has taught, twice, at the Australian National University</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Analytic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-70983-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511800443</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349587</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511800443</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511800443</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043940617 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9780511800443 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349587 |
oclc_num | 850570692 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 420 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Neeman, Amnon Verfasser aut Algebraic and analytic geometry Amnon Neeman Algebraic & Analytic Geometry Cambridge Cambridge University Press 2007 1 online resource (xii, 420 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 345 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Foreword -- 1. Introduction -- 2. Manifolds -- 3. Schemes -- 4. The complex topology -- 5. The analytification of a scheme -- 6. The high road to analytification -- 7. Coherent sheaves -- 8. Projective space -- the statements -- 9. Projective space -- the proofs -- 10. The proof of GAGA -- Appendix. The proofs concerning analytification; Bibliography -- Glossary -- Index This textbook, for an undergraduate course in modern algebraic geometry, recognizes that the typical undergraduate curriculum contains a great deal of analysis and, by contrast, little algebra. Because of this imbalance, it seems most natural to present algebraic geometry by highlighting the way it connects algebra and analysis; the average student will probably be more familiar and more comfortable with the analytic component. The book therefore focuses on Serre's GAGA theorem, which perhaps best encapsulates the link between algebra and analysis. GAGA provides the unifying theme of the book: we develop enough of the modern machinery of algebraic geometry to be able to give an essentially complete proof, at a level accessible to undergraduates throughout. The book is based on a course which the author has taught, twice, at the Australian National University Geometry, Algebraic Geometry, Analytic Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Algebraische Geometrie (DE-588)4001161-6 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-70983-5 https://doi.org/10.1017/CBO9780511800443 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neeman, Amnon Algebraic and analytic geometry Foreword -- 1. Introduction -- 2. Manifolds -- 3. Schemes -- 4. The complex topology -- 5. The analytification of a scheme -- 6. The high road to analytification -- 7. Coherent sheaves -- 8. Projective space -- the statements -- 9. Projective space -- the proofs -- 10. The proof of GAGA -- Appendix. The proofs concerning analytification; Bibliography -- Glossary -- Index Geometry, Algebraic Geometry, Analytic Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4151278-9 |
title | Algebraic and analytic geometry |
title_alt | Algebraic & Analytic Geometry |
title_auth | Algebraic and analytic geometry |
title_exact_search | Algebraic and analytic geometry |
title_full | Algebraic and analytic geometry Amnon Neeman |
title_fullStr | Algebraic and analytic geometry Amnon Neeman |
title_full_unstemmed | Algebraic and analytic geometry Amnon Neeman |
title_short | Algebraic and analytic geometry |
title_sort | algebraic and analytic geometry |
topic | Geometry, Algebraic Geometry, Analytic Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Geometry, Algebraic Geometry, Analytic Algebraische Geometrie Einführung |
url | https://doi.org/10.1017/CBO9780511800443 |
work_keys_str_mv | AT neemanamnon algebraicandanalyticgeometry AT neemanamnon algebraicanalyticgeometry |