Representation theorems in Hardy spaces:
The theory of Hardy spaces has close connections to many branches of mathematics including Fourier analysis, harmonic analysis, singular integrals, potential theory and operator theory, and has found essential applications in robust control engineering. For each application, the ability to represent...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2009
|
Schriftenreihe: | London Mathematical Society student texts
74 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The theory of Hardy spaces has close connections to many branches of mathematics including Fourier analysis, harmonic analysis, singular integrals, potential theory and operator theory, and has found essential applications in robust control engineering. For each application, the ability to represent elements of these classes by series or integral formulas is of utmost importance. This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane. With over 300 exercises, many with accompanying hints, this book is ideal for those studying Advanced Complex Analysis, Function Theory or Theory of Hardy Spaces. Advanced undergraduate and graduate students will find the book easy to follow, with a logical progression from basic theory to advanced research |
Beschreibung: | 1 Online-Ressource (xii, 372 Seiten) |
ISBN: | 9780511814525 |
DOI: | 10.1017/CBO9780511814525 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940611 | ||
003 | DE-604 | ||
005 | 20190606 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780511814525 |c Online |9 978-0-511-81452-5 | ||
024 | 7 | |a 10.1017/CBO9780511814525 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511814525 | ||
035 | |a (OCoLC)992885919 | ||
035 | |a (DE-599)BVBBV043940611 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515.94 |2 22 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Mashreghi, Javad |d 1968- |e Verfasser |0 (DE-588)138145431 |4 aut | |
245 | 1 | 0 | |a Representation theorems in Hardy spaces |c Javad Mashreghi |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2009 | |
300 | |a 1 Online-Ressource (xii, 372 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts |v 74 | |
505 | 8 | |a Fourier series -- Abel-Poisson means -- Harmonic functions in the unit disc -- Logarithmic convexity -- Analytic functions in the unit disc -- Norm inequalities for the conjugate function -- Blaschke products and their applications -- Interpolating linear operators -- The Fourier transform -- Poisson integrals -- Harmonic functions in the upper half plane -- The Plancherel transform -- Analytic functions in the upper half plane -- The Hilbert transform on R -- Topics from real analysis -- A panoramic view of the representation theorems | |
520 | |a The theory of Hardy spaces has close connections to many branches of mathematics including Fourier analysis, harmonic analysis, singular integrals, potential theory and operator theory, and has found essential applications in robust control engineering. For each application, the ability to represent elements of these classes by series or integral formulas is of utmost importance. This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane. With over 300 exercises, many with accompanying hints, this book is ideal for those studying Advanced Complex Analysis, Function Theory or Theory of Hardy Spaces. Advanced undergraduate and graduate students will find the book easy to follow, with a logical progression from basic theory to advanced research | ||
650 | 4 | |a Hardy spaces | |
650 | 4 | |a Analytic functions | |
650 | 0 | 7 | |a Hardy-Raum |0 (DE-588)4159109-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integralformel |0 (DE-588)4161910-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hardy-Raum |0 (DE-588)4159109-4 |D s |
689 | 0 | 1 | |a Integralformel |0 (DE-588)4161910-9 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a London Mathematical Society |0 (DE-588)1011030-6 |4 isb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-51768-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-73201-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511814525 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349581 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511814525 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511814525 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511814525 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881378918400 |
---|---|
any_adam_object | |
author | Mashreghi, Javad 1968- |
author_GND | (DE-588)138145431 |
author_facet | Mashreghi, Javad 1968- |
author_role | aut |
author_sort | Mashreghi, Javad 1968- |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV043940611 |
classification_rvk | SK 600 SK 700 |
collection | ZDB-20-CBO |
contents | Fourier series -- Abel-Poisson means -- Harmonic functions in the unit disc -- Logarithmic convexity -- Analytic functions in the unit disc -- Norm inequalities for the conjugate function -- Blaschke products and their applications -- Interpolating linear operators -- The Fourier transform -- Poisson integrals -- Harmonic functions in the upper half plane -- The Plancherel transform -- Analytic functions in the upper half plane -- The Hilbert transform on R -- Topics from real analysis -- A panoramic view of the representation theorems |
ctrlnum | (ZDB-20-CBO)CR9780511814525 (OCoLC)992885919 (DE-599)BVBBV043940611 |
dewey-full | 515.94 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.94 |
dewey-search | 515.94 |
dewey-sort | 3515.94 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511814525 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200529zcb4500</leader><controlfield tag="001">BV043940611</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190606 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511814525</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-81452-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511814525</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511814525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992885919</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940611</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.94</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mashreghi, Javad</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138145431</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation theorems in Hardy spaces</subfield><subfield code="c">Javad Mashreghi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 372 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">74</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fourier series -- Abel-Poisson means -- Harmonic functions in the unit disc -- Logarithmic convexity -- Analytic functions in the unit disc -- Norm inequalities for the conjugate function -- Blaschke products and their applications -- Interpolating linear operators -- The Fourier transform -- Poisson integrals -- Harmonic functions in the upper half plane -- The Plancherel transform -- Analytic functions in the upper half plane -- The Hilbert transform on R -- Topics from real analysis -- A panoramic view of the representation theorems</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of Hardy spaces has close connections to many branches of mathematics including Fourier analysis, harmonic analysis, singular integrals, potential theory and operator theory, and has found essential applications in robust control engineering. For each application, the ability to represent elements of these classes by series or integral formulas is of utmost importance. This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane. With over 300 exercises, many with accompanying hints, this book is ideal for those studying Advanced Complex Analysis, Function Theory or Theory of Hardy Spaces. Advanced undergraduate and graduate students will find the book easy to follow, with a logical progression from basic theory to advanced research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardy spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hardy-Raum</subfield><subfield code="0">(DE-588)4159109-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralformel</subfield><subfield code="0">(DE-588)4161910-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hardy-Raum</subfield><subfield code="0">(DE-588)4159109-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integralformel</subfield><subfield code="0">(DE-588)4161910-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">London Mathematical Society</subfield><subfield code="0">(DE-588)1011030-6</subfield><subfield code="4">isb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-51768-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-73201-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511814525</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349581</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511814525</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511814525</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511814525</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940611 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
institution_GND | (DE-588)1011030-6 |
isbn | 9780511814525 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349581 |
oclc_num | 992885919 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xii, 372 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Mashreghi, Javad 1968- Verfasser (DE-588)138145431 aut Representation theorems in Hardy spaces Javad Mashreghi Cambridge Cambridge University Press 2009 1 Online-Ressource (xii, 372 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 74 Fourier series -- Abel-Poisson means -- Harmonic functions in the unit disc -- Logarithmic convexity -- Analytic functions in the unit disc -- Norm inequalities for the conjugate function -- Blaschke products and their applications -- Interpolating linear operators -- The Fourier transform -- Poisson integrals -- Harmonic functions in the upper half plane -- The Plancherel transform -- Analytic functions in the upper half plane -- The Hilbert transform on R -- Topics from real analysis -- A panoramic view of the representation theorems The theory of Hardy spaces has close connections to many branches of mathematics including Fourier analysis, harmonic analysis, singular integrals, potential theory and operator theory, and has found essential applications in robust control engineering. For each application, the ability to represent elements of these classes by series or integral formulas is of utmost importance. This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane. With over 300 exercises, many with accompanying hints, this book is ideal for those studying Advanced Complex Analysis, Function Theory or Theory of Hardy Spaces. Advanced undergraduate and graduate students will find the book easy to follow, with a logical progression from basic theory to advanced research Hardy spaces Analytic functions Hardy-Raum (DE-588)4159109-4 gnd rswk-swf Integralformel (DE-588)4161910-9 gnd rswk-swf Hardy-Raum (DE-588)4159109-4 s Integralformel (DE-588)4161910-9 s DE-604 London Mathematical Society (DE-588)1011030-6 isb Erscheint auch als Druck-Ausgabe 978-0-521-51768-3 Erscheint auch als Druck-Ausgabe 978-0-521-73201-7 https://doi.org/10.1017/CBO9780511814525 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mashreghi, Javad 1968- Representation theorems in Hardy spaces Fourier series -- Abel-Poisson means -- Harmonic functions in the unit disc -- Logarithmic convexity -- Analytic functions in the unit disc -- Norm inequalities for the conjugate function -- Blaschke products and their applications -- Interpolating linear operators -- The Fourier transform -- Poisson integrals -- Harmonic functions in the upper half plane -- The Plancherel transform -- Analytic functions in the upper half plane -- The Hilbert transform on R -- Topics from real analysis -- A panoramic view of the representation theorems Hardy spaces Analytic functions Hardy-Raum (DE-588)4159109-4 gnd Integralformel (DE-588)4161910-9 gnd |
subject_GND | (DE-588)4159109-4 (DE-588)4161910-9 |
title | Representation theorems in Hardy spaces |
title_auth | Representation theorems in Hardy spaces |
title_exact_search | Representation theorems in Hardy spaces |
title_full | Representation theorems in Hardy spaces Javad Mashreghi |
title_fullStr | Representation theorems in Hardy spaces Javad Mashreghi |
title_full_unstemmed | Representation theorems in Hardy spaces Javad Mashreghi |
title_short | Representation theorems in Hardy spaces |
title_sort | representation theorems in hardy spaces |
topic | Hardy spaces Analytic functions Hardy-Raum (DE-588)4159109-4 gnd Integralformel (DE-588)4161910-9 gnd |
topic_facet | Hardy spaces Analytic functions Hardy-Raum Integralformel |
url | https://doi.org/10.1017/CBO9780511814525 |
work_keys_str_mv | AT mashreghijavad representationtheoremsinhardyspaces AT londonmathematicalsociety representationtheoremsinhardyspaces |