Algebraic geometry and statistical learning theory:
Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2009
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
25 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 286 pages) |
ISBN: | 9780511800474 |
DOI: | 10.1017/CBO9780511800474 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940556 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780511800474 |c Online |9 978-0-511-80047-4 | ||
024 | 7 | |a 10.1017/CBO9780511800474 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511800474 | ||
035 | |a (OCoLC)967678667 | ||
035 | |a (DE-599)BVBBV043940556 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 006.3/1 |2 22 | |
084 | |a QH 740 |0 (DE-625)141614: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Watanabe, Sumio |d 1959- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic geometry and statistical learning theory |c Sumio Watanabe |
246 | 1 | 3 | |a Algebraic Geometry & Statistical Learning Theory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2009 | |
300 | |a 1 online resource (viii, 286 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics |v 25 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties | ||
650 | 4 | |a Computational learning theory / Statistical methods | |
650 | 4 | |a Geometry, Algebraic | |
650 | 0 | 7 | |a Mathematische Lerntheorie |0 (DE-588)4169103-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | 1 | |a Mathematische Lerntheorie |0 (DE-588)4169103-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-86467-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511800474 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349526 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511800474 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511800474 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881240506368 |
---|---|
any_adam_object | |
author | Watanabe, Sumio 1959- |
author_facet | Watanabe, Sumio 1959- |
author_role | aut |
author_sort | Watanabe, Sumio 1959- |
author_variant | s w sw |
building | Verbundindex |
bvnumber | BV043940556 |
classification_rvk | QH 740 SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511800474 (OCoLC)967678667 (DE-599)BVBBV043940556 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511800474 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03167nmm a2200517zcb4500</leader><controlfield tag="001">BV043940556</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511800474</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-80047-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511800474</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511800474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678667</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940556</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 740</subfield><subfield code="0">(DE-625)141614:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watanabe, Sumio</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic geometry and statistical learning theory</subfield><subfield code="c">Sumio Watanabe</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Algebraic Geometry & Statistical Learning Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 286 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational learning theory / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Lerntheorie</subfield><subfield code="0">(DE-588)4169103-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Lerntheorie</subfield><subfield code="0">(DE-588)4169103-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86467-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511800474</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349526</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511800474</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511800474</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940556 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9780511800474 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349526 |
oclc_num | 967678667 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 286 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Watanabe, Sumio 1959- Verfasser aut Algebraic geometry and statistical learning theory Sumio Watanabe Algebraic Geometry & Statistical Learning Theory Cambridge Cambridge University Press 2009 1 online resource (viii, 286 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 25 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties Computational learning theory / Statistical methods Geometry, Algebraic Mathematische Lerntheorie (DE-588)4169103-9 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s Mathematische Lerntheorie (DE-588)4169103-9 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-86467-1 https://doi.org/10.1017/CBO9780511800474 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Watanabe, Sumio 1959- Algebraic geometry and statistical learning theory Computational learning theory / Statistical methods Geometry, Algebraic Mathematische Lerntheorie (DE-588)4169103-9 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4169103-9 (DE-588)4001161-6 |
title | Algebraic geometry and statistical learning theory |
title_alt | Algebraic Geometry & Statistical Learning Theory |
title_auth | Algebraic geometry and statistical learning theory |
title_exact_search | Algebraic geometry and statistical learning theory |
title_full | Algebraic geometry and statistical learning theory Sumio Watanabe |
title_fullStr | Algebraic geometry and statistical learning theory Sumio Watanabe |
title_full_unstemmed | Algebraic geometry and statistical learning theory Sumio Watanabe |
title_short | Algebraic geometry and statistical learning theory |
title_sort | algebraic geometry and statistical learning theory |
topic | Computational learning theory / Statistical methods Geometry, Algebraic Mathematische Lerntheorie (DE-588)4169103-9 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Computational learning theory / Statistical methods Geometry, Algebraic Mathematische Lerntheorie Algebraische Geometrie |
url | https://doi.org/10.1017/CBO9780511800474 |
work_keys_str_mv | AT watanabesumio algebraicgeometryandstatisticallearningtheory AT watanabesumio algebraicgeometrystatisticallearningtheory |