Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis:
Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. Th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | Cambridge studies in advanced mathematics
41 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated |
Beschreibung: | Title from publisher's bibliographic system (viewed on 31 May 2016) |
Beschreibung: | 1 online resource (xiii, 344 Seiten) |
ISBN: | 9780511666162 |
DOI: | 10.1017/CBO9780511666162 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940476 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780511666162 |c Online |9 978-0-511-66616-2 | ||
024 | 7 | |a 10.1017/CBO9780511666162 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511666162 | ||
035 | |a (OCoLC)967678688 | ||
035 | |a (DE-599)BVBBV043940476 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 512/.24 |2 20 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Laumon, Gérard |d 1952- |e Verfasser |0 (DE-588)1089700369 |4 aut | |
245 | 1 | 0 | |a Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis |c Gérard Laumon |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 online resource (xiii, 344 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 41 | |
500 | |a Title from publisher's bibliographic system (viewed on 31 May 2016) | ||
520 | |a Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated | ||
650 | 4 | |a Drinfeld modular varieties | |
650 | 4 | |a Homology theory | |
650 | 0 | 7 | |a Drinfeld-Modul |0 (DE-588)4132653-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spurformel |0 (DE-588)4182612-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologietheorie |0 (DE-588)4164610-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automorphe Form |0 (DE-588)4003972-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Shimura-Mannigfaltigkeit |0 (DE-588)4181143-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Shimura-Mannigfaltigkeit |0 (DE-588)4181143-4 |D s |
689 | 0 | 1 | |a Drinfeld-Modul |0 (DE-588)4132653-2 |D s |
689 | 0 | 2 | |a Kohomologietheorie |0 (DE-588)4164610-1 |D s |
689 | 0 | 3 | |a Automorphe Form |0 (DE-588)4003972-9 |D s |
689 | 0 | 4 | |a Spurformel |0 (DE-588)4182612-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-47060-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-17274-5 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 41 |w (DE-604)BV044781283 |9 41 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511666162 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349446 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511666162 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511666162 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511666162 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176881012965376 |
---|---|
any_adam_object | |
author | Laumon, Gérard 1952- |
author_GND | (DE-588)1089700369 |
author_facet | Laumon, Gérard 1952- |
author_role | aut |
author_sort | Laumon, Gérard 1952- |
author_variant | g l gl |
building | Verbundindex |
bvnumber | BV043940476 |
classification_rvk | SK 240 SK 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511666162 (OCoLC)967678688 (DE-599)BVBBV043940476 |
dewey-full | 512/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.24 |
dewey-search | 512/.24 |
dewey-sort | 3512 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511666162 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03615nmm a2200601zcb4500</leader><controlfield tag="001">BV043940476</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511666162</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66616-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511666162</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511666162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940476</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.24</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Laumon, Gérard</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089700369</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis</subfield><subfield code="c">Gérard Laumon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 344 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">41</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 31 May 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drinfeld modular varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Drinfeld-Modul</subfield><subfield code="0">(DE-588)4132653-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spurformel</subfield><subfield code="0">(DE-588)4182612-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Shimura-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4181143-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Shimura-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4181143-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Drinfeld-Modul</subfield><subfield code="0">(DE-588)4132653-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Spurformel</subfield><subfield code="0">(DE-588)4182612-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-47060-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-17274-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">41</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">41</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511666162</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349446</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511666162</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511666162</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511666162</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940476 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9780511666162 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349446 |
oclc_num | 967678688 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (xiii, 344 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Laumon, Gérard 1952- Verfasser (DE-588)1089700369 aut Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis Gérard Laumon Cambridge Cambridge University Press 1995 1 online resource (xiii, 344 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 41 Title from publisher's bibliographic system (viewed on 31 May 2016) Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated Drinfeld modular varieties Homology theory Drinfeld-Modul (DE-588)4132653-2 gnd rswk-swf Spurformel (DE-588)4182612-7 gnd rswk-swf Kohomologietheorie (DE-588)4164610-1 gnd rswk-swf Automorphe Form (DE-588)4003972-9 gnd rswk-swf Shimura-Mannigfaltigkeit (DE-588)4181143-4 gnd rswk-swf Shimura-Mannigfaltigkeit (DE-588)4181143-4 s Drinfeld-Modul (DE-588)4132653-2 s Kohomologietheorie (DE-588)4164610-1 s Automorphe Form (DE-588)4003972-9 s Spurformel (DE-588)4182612-7 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-47060-5 Erscheint auch als Druck-Ausgabe 978-0-521-17274-5 Cambridge studies in advanced mathematics 41 (DE-604)BV044781283 41 https://doi.org/10.1017/CBO9780511666162 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Laumon, Gérard 1952- Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis Cambridge studies in advanced mathematics Drinfeld modular varieties Homology theory Drinfeld-Modul (DE-588)4132653-2 gnd Spurformel (DE-588)4182612-7 gnd Kohomologietheorie (DE-588)4164610-1 gnd Automorphe Form (DE-588)4003972-9 gnd Shimura-Mannigfaltigkeit (DE-588)4181143-4 gnd |
subject_GND | (DE-588)4132653-2 (DE-588)4182612-7 (DE-588)4164610-1 (DE-588)4003972-9 (DE-588)4181143-4 |
title | Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis |
title_auth | Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis |
title_exact_search | Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis |
title_full | Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis Gérard Laumon |
title_fullStr | Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis Gérard Laumon |
title_full_unstemmed | Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis Gérard Laumon |
title_short | Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis |
title_sort | cohomology of drinfeld modular varieties part 1 geometry counting of points and local harmonic analysis |
topic | Drinfeld modular varieties Homology theory Drinfeld-Modul (DE-588)4132653-2 gnd Spurformel (DE-588)4182612-7 gnd Kohomologietheorie (DE-588)4164610-1 gnd Automorphe Form (DE-588)4003972-9 gnd Shimura-Mannigfaltigkeit (DE-588)4181143-4 gnd |
topic_facet | Drinfeld modular varieties Homology theory Drinfeld-Modul Spurformel Kohomologietheorie Automorphe Form Shimura-Mannigfaltigkeit |
url | https://doi.org/10.1017/CBO9780511666162 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT laumongerard cohomologyofdrinfeldmodularvarietiespart1geometrycountingofpointsandlocalharmonicanalysis |