Cohomology of Drinfeld modular varieties, Part 1, Geometry, counting of points, and local harmonic analysis:

Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Laumon, Gérard 1952- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1995
Schriftenreihe:Cambridge studies in advanced mathematics 41
Schlagworte:
Online-Zugang:BSB01
FHN01
UBR01
URL des Erstveröffentlichers
Zusammenfassung:Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated
Beschreibung:Title from publisher's bibliographic system (viewed on 31 May 2016)
Beschreibung:1 online resource (xiii, 344 Seiten)
ISBN:9780511666162
DOI:10.1017/CBO9780511666162

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen