Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology:
The second volume of this comprehensive treatise focusses on Buchberger theory and its application to the algorithmic view of commutative algebra. In distinction to other works, the presentation here is based on the intrinsic linear algebra structure of Groebner bases, and thus elementary considerat...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
2005
|
Series: | Encyclopedia of mathematics and its applications
99 |
Subjects: | |
Online Access: | BSB01 FHN01 Volltext |
Summary: | The second volume of this comprehensive treatise focusses on Buchberger theory and its application to the algorithmic view of commutative algebra. In distinction to other works, the presentation here is based on the intrinsic linear algebra structure of Groebner bases, and thus elementary considerations lead easily to the state-of-the-art in issues of implementation. The same language describes the applications of Groebner technology to the central problems of commutative algebra. The book can be also used as a reference on elementary ideal theory and a source for the state-of-the-art in its algorithmization. Aiming to provide a complete survey on Groebner bases and their applications, the author also includes advanced aspects of Buchberger theory, such as the complexity of the algorithm, Galligo's theorem, the optimality of degrevlex, the Gianni-Kalkbrener theorem, the FGLM algorithm, and so on. Thus it will be essential for all workers in commutative algebra, computational algebra and algebraic geometry |
Item Description: | Title from publisher's bibliographic system (viewed on 31 May 2016) |
Physical Description: | 1 online resource (xxii, 759 pages) |
ISBN: | 9781107340954 |
DOI: | 10.1017/CBO9781107340954 |
Staff View
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940475 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9781107340954 |c Online |9 978-1-107-34095-4 | ||
024 | 7 | |a 10.1017/CBO9781107340954 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107340954 | ||
035 | |a (OCoLC)852654324 | ||
035 | |a (DE-599)BVBBV043940475 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.44 |2 22 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Mora, Teo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology |c Teo Mora |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 online resource (xxii, 759 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v 99 | |
500 | |a Title from publisher's bibliographic system (viewed on 31 May 2016) | ||
520 | |a The second volume of this comprehensive treatise focusses on Buchberger theory and its application to the algorithmic view of commutative algebra. In distinction to other works, the presentation here is based on the intrinsic linear algebra structure of Groebner bases, and thus elementary considerations lead easily to the state-of-the-art in issues of implementation. The same language describes the applications of Groebner technology to the central problems of commutative algebra. The book can be also used as a reference on elementary ideal theory and a source for the state-of-the-art in its algorithmization. Aiming to provide a complete survey on Groebner bases and their applications, the author also includes advanced aspects of Buchberger theory, such as the complexity of the algorithm, Galligo's theorem, the optimality of degrevlex, the Gianni-Kalkbrener theorem, the FGLM algorithm, and so on. Thus it will be essential for all workers in commutative algebra, computational algebra and algebraic geometry | ||
650 | 4 | |a Equations / Numerical solutions | |
650 | 4 | |a Polynomials | |
650 | 4 | |a Gröbner bases | |
650 | 4 | |a Iterative methods (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-81156-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107340954 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349445 | ||
966 | e | |u https://doi.org/10.1017/CBO9781107340954 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107340954 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Record in the Search Index
_version_ | 1804176881002479616 |
---|---|
any_adam_object | |
author | Mora, Teo |
author_facet | Mora, Teo |
author_role | aut |
author_sort | Mora, Teo |
author_variant | t m tm |
building | Verbundindex |
bvnumber | BV043940475 |
classification_rvk | SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107340954 (OCoLC)852654324 (DE-599)BVBBV043940475 |
dewey-full | 512.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.44 |
dewey-search | 512.44 |
dewey-sort | 3512.44 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107340954 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02719nmm a2200445zcb4500</leader><controlfield tag="001">BV043940475</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107340954</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-34095-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107340954</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107340954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852654324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940475</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.44</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mora, Teo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology</subfield><subfield code="c">Teo Mora</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 759 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">99</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 31 May 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The second volume of this comprehensive treatise focusses on Buchberger theory and its application to the algorithmic view of commutative algebra. In distinction to other works, the presentation here is based on the intrinsic linear algebra structure of Groebner bases, and thus elementary considerations lead easily to the state-of-the-art in issues of implementation. The same language describes the applications of Groebner technology to the central problems of commutative algebra. The book can be also used as a reference on elementary ideal theory and a source for the state-of-the-art in its algorithmization. Aiming to provide a complete survey on Groebner bases and their applications, the author also includes advanced aspects of Buchberger theory, such as the complexity of the algorithm, Galligo's theorem, the optimality of degrevlex, the Gianni-Kalkbrener theorem, the FGLM algorithm, and so on. Thus it will be essential for all workers in commutative algebra, computational algebra and algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gröbner bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-81156-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107340954</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349445</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107340954</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107340954</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940475 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781107340954 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349445 |
oclc_num | 852654324 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxii, 759 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Mora, Teo Verfasser aut Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology Teo Mora Cambridge Cambridge University Press 2005 1 online resource (xxii, 759 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications 99 Title from publisher's bibliographic system (viewed on 31 May 2016) The second volume of this comprehensive treatise focusses on Buchberger theory and its application to the algorithmic view of commutative algebra. In distinction to other works, the presentation here is based on the intrinsic linear algebra structure of Groebner bases, and thus elementary considerations lead easily to the state-of-the-art in issues of implementation. The same language describes the applications of Groebner technology to the central problems of commutative algebra. The book can be also used as a reference on elementary ideal theory and a source for the state-of-the-art in its algorithmization. Aiming to provide a complete survey on Groebner bases and their applications, the author also includes advanced aspects of Buchberger theory, such as the complexity of the algorithm, Galligo's theorem, the optimality of degrevlex, the Gianni-Kalkbrener theorem, the FGLM algorithm, and so on. Thus it will be essential for all workers in commutative algebra, computational algebra and algebraic geometry Equations / Numerical solutions Polynomials Gröbner bases Iterative methods (Mathematics) Erscheint auch als Druckausgabe 978-0-521-81156-9 https://doi.org/10.1017/CBO9781107340954 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mora, Teo Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology Equations / Numerical solutions Polynomials Gröbner bases Iterative methods (Mathematics) |
title | Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology |
title_auth | Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology |
title_exact_search | Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology |
title_full | Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology Teo Mora |
title_fullStr | Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology Teo Mora |
title_full_unstemmed | Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology Teo Mora |
title_short | Solving polynomial equation systems, 2, Macaulay's paradigm and Gröbner technology |
title_sort | solving polynomial equation systems 2 macaulay s paradigm and grobner technology |
topic | Equations / Numerical solutions Polynomials Gröbner bases Iterative methods (Mathematics) |
topic_facet | Equations / Numerical solutions Polynomials Gröbner bases Iterative methods (Mathematics) |
url | https://doi.org/10.1017/CBO9781107340954 |
work_keys_str_mv | AT morateo solvingpolynomialequationsystems2macaulaysparadigmandgrobnertechnology |