Compressed sensing for magnetic resonance image reconstruction:
Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UER01 URL des Erstveröffentlichers |
Zusammenfassung: | Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the interesting challenges consequently thrown up in signal reconstruction. Off-line and on-line techniques in dynamic MRI reconstruction are visited. Towards the end the book broadens the subject by discussing how CS is being applied to other areas of biomedical signal processing like X-ray, CT and EEG acquisition. The emphasis throughout is on qualitative understanding of the subject rather than on quantitative aspects of mathematical forms. The book is intended for MRI engineers interested in the brass tacks of image formation; medical physicists interested in advanced techniques in image reconstruction; and mathematicians or signal processing engineers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 06 Jun 2016) |
Beschreibung: | 1 online resource (xv, 206 pages) |
ISBN: | 9781316217795 |
DOI: | 10.1017/CBO9781316217795 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043940433 | ||
003 | DE-604 | ||
005 | 20190307 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316217795 |c Online |9 978-1-316-21779-5 | ||
024 | 7 | |a 10.1017/CBO9781316217795 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316217795 | ||
035 | |a (OCoLC)967599903 | ||
035 | |a (DE-599)BVBBV043940433 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-29 |a DE-92 | ||
082 | 0 | |a 616.07/548 |2 23 | |
100 | 1 | |a Majumdar, Angshul |e Verfasser |4 aut | |
245 | 1 | 0 | |a Compressed sensing for magnetic resonance image reconstruction |c Angshul Majumdar |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (xv, 206 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 06 Jun 2016) | ||
505 | 8 | |a Mathematical techniques -- Single channel static MR image reconstruction -- Multi-coil parallel MRI reconstruction -- Dynamic MRI reconstruction -- Applications in other areas -- Some open problems | |
520 | |a Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the interesting challenges consequently thrown up in signal reconstruction. Off-line and on-line techniques in dynamic MRI reconstruction are visited. Towards the end the book broadens the subject by discussing how CS is being applied to other areas of biomedical signal processing like X-ray, CT and EEG acquisition. The emphasis throughout is on qualitative understanding of the subject rather than on quantitative aspects of mathematical forms. The book is intended for MRI engineers interested in the brass tacks of image formation; medical physicists interested in advanced techniques in image reconstruction; and mathematicians or signal processing engineers | ||
650 | 4 | |a Compressed sensing (Telecommunication) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-10376-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316217795 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349403 | ||
966 | e | |u https://doi.org/10.1017/CBO9781316217795 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316217795 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316217795 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880941662208 |
---|---|
any_adam_object | |
author | Majumdar, Angshul |
author_facet | Majumdar, Angshul |
author_role | aut |
author_sort | Majumdar, Angshul |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV043940433 |
collection | ZDB-20-CBO |
contents | Mathematical techniques -- Single channel static MR image reconstruction -- Multi-coil parallel MRI reconstruction -- Dynamic MRI reconstruction -- Applications in other areas -- Some open problems |
ctrlnum | (ZDB-20-CBO)CR9781316217795 (OCoLC)967599903 (DE-599)BVBBV043940433 |
dewey-full | 616.07/548 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 616 - Diseases |
dewey-raw | 616.07/548 |
dewey-search | 616.07/548 |
dewey-sort | 3616.07 3548 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
doi_str_mv | 10.1017/CBO9781316217795 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02777nmm a2200409zc 4500</leader><controlfield tag="001">BV043940433</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316217795</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-21779-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316217795</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316217795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967599903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940433</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.07/548</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majumdar, Angshul</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compressed sensing for magnetic resonance image reconstruction</subfield><subfield code="c">Angshul Majumdar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 206 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 06 Jun 2016)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Mathematical techniques -- Single channel static MR image reconstruction -- Multi-coil parallel MRI reconstruction -- Dynamic MRI reconstruction -- Applications in other areas -- Some open problems</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the interesting challenges consequently thrown up in signal reconstruction. Off-line and on-line techniques in dynamic MRI reconstruction are visited. Towards the end the book broadens the subject by discussing how CS is being applied to other areas of biomedical signal processing like X-ray, CT and EEG acquisition. The emphasis throughout is on qualitative understanding of the subject rather than on quantitative aspects of mathematical forms. The book is intended for MRI engineers interested in the brass tacks of image formation; medical physicists interested in advanced techniques in image reconstruction; and mathematicians or signal processing engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressed sensing (Telecommunication)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-10376-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316217795</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349403</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316217795</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316217795</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316217795</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940433 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316217795 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349403 |
oclc_num | 967599903 |
open_access_boolean | |
owner | DE-12 DE-29 DE-92 |
owner_facet | DE-12 DE-29 DE-92 |
physical | 1 online resource (xv, 206 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UER_PDA_CBO_Kauf |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Majumdar, Angshul Verfasser aut Compressed sensing for magnetic resonance image reconstruction Angshul Majumdar Cambridge Cambridge University Press 2015 1 online resource (xv, 206 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 06 Jun 2016) Mathematical techniques -- Single channel static MR image reconstruction -- Multi-coil parallel MRI reconstruction -- Dynamic MRI reconstruction -- Applications in other areas -- Some open problems Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the interesting challenges consequently thrown up in signal reconstruction. Off-line and on-line techniques in dynamic MRI reconstruction are visited. Towards the end the book broadens the subject by discussing how CS is being applied to other areas of biomedical signal processing like X-ray, CT and EEG acquisition. The emphasis throughout is on qualitative understanding of the subject rather than on quantitative aspects of mathematical forms. The book is intended for MRI engineers interested in the brass tacks of image formation; medical physicists interested in advanced techniques in image reconstruction; and mathematicians or signal processing engineers Compressed sensing (Telecommunication) Erscheint auch als Druck-Ausgabe 978-1-107-10376-4 https://doi.org/10.1017/CBO9781316217795 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Majumdar, Angshul Compressed sensing for magnetic resonance image reconstruction Mathematical techniques -- Single channel static MR image reconstruction -- Multi-coil parallel MRI reconstruction -- Dynamic MRI reconstruction -- Applications in other areas -- Some open problems Compressed sensing (Telecommunication) |
title | Compressed sensing for magnetic resonance image reconstruction |
title_auth | Compressed sensing for magnetic resonance image reconstruction |
title_exact_search | Compressed sensing for magnetic resonance image reconstruction |
title_full | Compressed sensing for magnetic resonance image reconstruction Angshul Majumdar |
title_fullStr | Compressed sensing for magnetic resonance image reconstruction Angshul Majumdar |
title_full_unstemmed | Compressed sensing for magnetic resonance image reconstruction Angshul Majumdar |
title_short | Compressed sensing for magnetic resonance image reconstruction |
title_sort | compressed sensing for magnetic resonance image reconstruction |
topic | Compressed sensing (Telecommunication) |
topic_facet | Compressed sensing (Telecommunication) |
url | https://doi.org/10.1017/CBO9781316217795 |
work_keys_str_mv | AT majumdarangshul compressedsensingformagneticresonanceimagereconstruction |